The search for exoplanets in radio

Philippe Zarka

LESIA & USN, philippe.zarka@obspm.fr

Special thanks to Jake Turner & Jean-Mathias Grießmeier

Jupiter's auroral radio emissions

Frequency

[Zarka et al., 2004, 2012]

Jovian decameter emission as intense as solar emissions

Detectability

Detectability

Radio emission	С	N (dipoles)	b (kHz)	τ
Jovian radio components	10 ¹ -10 ²	1	10	1 s
			100	10 ms
SKR	$10^2 - 10^3$	1	100	1-10 s
UKR and NKR	10 ⁴ -10 ⁵	1	200-500	10-60 min
		10 ¹ -10 ²	100	10 s
SED	10 ⁵	10 ²	10 ⁴	300 ms
LIED	10 ⁶	10 ³	104	300 ms
Radio-exoplanet	10 ⁷	100-500	$10^{3} - 10^{4}$	10-60 min
		~10	2×10^{4}	1 day

[[]Zarka et al., 2012]

Scaling law & Predictions

Potentially detectable signals with LOFAR, UTR-2, NenuFAR

[Grießmeier et al., 2011; Grießmeier, 2018]

Motivations

B, internal structure, exo-magnetospheric physics, SPI, habitability ...

[Hess & Zarka, 2011]

Intense observational efforts, no confirmed detection until recently

Beamformed observations with LOFAR

Phased array (beamformed) mode, core only 24 stations x 48 dipoles = 1152 antennas 15-74 MHz, IQUV multi-beam (1 ON, 2 OFFs), 2-3° apart high time-frequency resolutions \Rightarrow RFI mitigation

[Turner et al., 2017]

Beamformed observations with LOFAR : strongly disturbed at low frequencies

« Benchmarking » on Jupiter

[Turner et al., 2017]

A&A 624, A40 (2019) https://doi.org/10.1051/0004-6361/201832848 © J. D. Turner et al. 2019

The search for radio emission from exoplanets using LOFAR beam-formed observations: Jupiter as an exoplanet

Jake D. Turner^{1,2,3}, Jean-Mathias Grießmeier^{1,4}, Philippe Zarka^{4,5}, and Iaroslavna Vasylieva⁶

Jupiter observation with LOFAR & NDA

Jupiter observation & exoplanetary targets with LOFAR

Parameter	Obs #1	Obs #2	Obs #3	Obs #4
LOFAR OBS ID	L568467	L570725	L569123	L547645
Date (UT)	February 11, 2017	February 18, 2017	February 26, 2017	September 28, 2016
Time (UT)	02:30 05:30	01:12 04:12	01:16 04:16	23:00 04:00
Target	Jupiter	Tau Boötis	Tau Boötis	Upsilon Andromedae
ON-beam RA (2000)	13:27:49.42	13:47:15.74	13:47:15.74	01:36:47.84
ON-beam Dec (2000)	-07:39:01.70	+17:27:24.90	+17:27:24.90	+41:24:19.60
OFF-beam 1 RA (2000)	13:25:51.27	13:54:44.95	13:54:44.95	01:40:00
OFF-beam 1 Dec (2000)	-09:35:11.94	+16:49:29.20	+16:49:29.20	+38:00:00
OFF-beam 2 RA (2000)	13:35:55.97	13:58:10.366	13:58:10.366	01:30:00
OFF-heam 2 Dec (2000)	-09:05:16.10	+19:00:01.37	+19:00:01.37	+48:00:00

Transposition of the Jovian signal in Stokes I & V and in frequency

$$I_{\text{sim}} = I_{\text{S2}} + \alpha I_{\text{J2}},$$
$$= I_{\text{S2}} \left(1 - \alpha \frac{I_{\text{J1}}}{I_{\text{S1}}} \frac{S_{\text{S1}}}{S_{\text{S2}}} \right)$$

 $V_{\rm sim} = V_{\rm S2} \left(\frac{\alpha}{I_{\rm S1}} \right) \left(\frac{I_{\rm S2}}{I_{\rm S1}} \right) \left(\frac{S_{\rm S1}}{S_{\rm S2}} \right)$

$$\mu_{10} \sim \mu - 1.3\sigma_g$$
$$I_{\text{S1}} = \mu = \mu_{10} \left(1 - \frac{1.3}{\sqrt{n_{\text{pol}} \ b \ \tau_r}} \right)^{-1}$$

+ correction of the instrumental response in polarization

Detection of attenuated signal: slowly varying (minutes)

|V|, $\alpha = 10^{-4}$

 \rightarrow slowly varying emissions

Detection of attenuated signal: bursts (~1 sec)

Detection limit

S _J (ref; Jy at 5 AU)	Distance (pc)	Stokes- $I \alpha_J$	Stokes-V α_J
$4 \times 10^{4(a)}$	5	1×10^{7}	1×10^{6}
"	10	4×10^{7}	4×10^{6}
"	20	2×10^{8}	2×10^{7}
$4 \times 10^{5(b)}$	5	1×10^{6}	1×10^{5}
"	10	4×10^{6}	4×10^{5}
"	20	2×10^{7}	2×10^{6}
$6 \times 10^{6(c)}$	5	6×10^{4}	6×10^{3}
"	10	3×10^{5}	3×10^{4}
"	20	1×10^{6}	1×10^{5}

Table 5. Detection limit of LOFAR LBA beam-formed observations found by observing "Jupiter as an exoplanet".

Notes. All calculations were done with Eq. (21) where the scaling factor $\alpha = 10^{-3.5}$ for Stokes-*I* and $\alpha = 10^{-4.5}$ for Stokes-*V* and *S*_J(obs) = 3 × 10⁴ Jy (Sect. 3.1, Fig. 2). ^(a)The level of Jupiter's burst emission exceeded in ≥50% of Jupiter bursts (Zarka et al. 2004, Fig. 7). ^(b)The mean level of Jupiter's burst emission exceeded in ~1% of Jupiter bursts. ^(c)Maximum peak of Jupiter's S-burst emission (Queinnec & Zarka 2001).

\rightarrow 10⁴ to 10⁵ x Jupiter's bursts detectable at 5-20 pc range

Test on LOFAR survey data

Observations of 55 Cnc, υ And, τ Boo

[Turner et al., 2017]

A&A 645, A59 (2021) https://doi.org/10.1051/0004-6361/201937201 © ESO 2021

The search for radio emission from the exoplanetary systems 55 Cancri, v Andromedae, and τ Boötis using LOFAR beam-formed observations

Jake D. Turner^{1,2}, Philippe Zarka^{3,4}, Jean-Mathias Grießmeier^{3,5}, Joseph Lazio⁶, Baptiste Cecconi^{3,4}, J. Emilio Enriquez^{7,8}, Julien N. Girard^{9,10}, Ray Jayawardhana¹, Laurent Lamy⁴,

Jonathan D. Nichols¹¹, and Imke de Pater¹²

	units	55 Cnc b	55 Cnc e	v And b	τ Boo b
* type		$G8V^a$	$G8V^a$	F9V	F7V
d	[pc]	12.5^{b}	12.5^{b}	13.5 ^b	15.6 ^b
t _*	[Gyr]	10.2 ± 2.2^{a}	10.2 ± 2.2^{a}	3.8 ± 1^{b}	1.0 ± 0.6^{b}
а	[AU]	0.114 ^a	0.0156 ^a	0.057 ^c	0.0462 ^c
$M_{\rm p}$	$[M_{\rm J}]$	0.81 ^a	0.024^{a}	$\geq 0.68^{\circ}$	$\geq 3.87^{\circ}$
$R_{\rm p}$	$[R_{\rm J}]$	unknown	0.194 ^a	unknown	unknown
V _{max} ^{NR}	[MHz]	20^d	30^d	14^{d}	74 ^d
Φ_{max}^{NR}	[mJy]	2.9^{d}	150 ^d	75^d	170 ^d
v_{max}^R	[MHz]	3.3 ^d	19 ^d	2.2^{d}	15 ^d
Φ_{max}^R	[mJy]	5.3 ^d	170^{d}	140^{d}	290^{d}

Observations of 55 Cnc, υ And, τ Boo

[Turner et al., 2017]

Choice of 3 targets from scaling law predictions

Distance ~12-15 pc

Coverage of orbital phase with 20-45 hours / target

Table 3: Parameters for the post-processing pipeline.

Parameter	Value	Units
Frequency ranges	26-74, 26-50, 50-74 ^a	MHz
	15-62, 15-38, 38-62 ^b	MHz
Q1 Time bins (δT)	2	minutes
Q1 Frequency Bins (δF)	0.5	MHz
Q2-Q4 rebin times ($\delta \tau$)	1, 10	sec
Mask threshold	90	%
Smoothing window		
for high-pass filtering	10	$\delta \tau$
Threshold (η) range	1 - 6	σ

^a Frequency ranges for the 55 Cnc observations.

^b Frequency ranges for the v And and τ Boo observations.

Possible detection of bursts from τ Boo (session #1)

Reality and origin of the radio signal ?

Stokes V, LHC « Objective » detection no simultaneous Jupiter emission A few tens bursts ~1 sec (not at 10 sec) 15-21 MHz , S≥890 mJy Confidence level 3.2σ ON & OFF curves ≠ with 98% probability (K-S test)

No large flare from τ Boo A B = 1.7-3.9 G (ZDI) Flares from τ Boo B M-dwarf ? Requires strong coronal B field Scaling law

 $\begin{array}{ll} \mbox{If τ Boo b, $B_{surface} = 5.4-7.5$ G} \\ \mbox{P} = S \ \Omega d^2 \ \Delta f \ \sim 10^{15} \ W \qquad \Rightarrow \ \sim 10^5 \ x \ Jupiter \\ \mbox{S} = k \ T_B \ \omega \ / \ \lambda^2 \qquad \qquad \Rightarrow \ T_B \ \sim \ 10^{18} \ K \ for \ a \ 1 \ R_J \ \varnothing \ source \\ \mbox{ = κ Jupiter for a 10-100 km \varnothing source } \end{array}$

Slowly variable emission of τ Boo ? (session #6)

 \Rightarrow likely spurious but unexplained origin

Marginal detection of bursts from v And

υ And : marginal detection ~2σ55 Cnc : no detection of bursts

In parallel : LOFAR imaging survey results

Ongoing ...

NenuFAR, 10-85 MHz

Massive observations \Rightarrow orbital / rotational radio period ?

Perspective

SKA (Low), 50-350 MHz, 2027-30?

Even before the discovery of the first exoplanet in 1995, radio observations inspired by the intensity of Jupiter's radio emissions had begun. They proved to be extremely difficult, but also motivated the development of ever larger antenna arrays. The theory rather predicts emissions at low radio frequencies and of very low intensity. But the predictions are subject to large uncertainties on both intensity and emitted frequencies, and there was no guarantee that these radio emissions could be detected before the advent of SKA. In recent months, several papers have suggested that the tip of the radio detection iceberg is now emerging above the galactic background. If these detections are confirmed, they will open up a new and promising field of study: comparative exo-magnetospheric physics, i.e. the physics of star-planet plasma interactions. In this field, we know only 6 planetary magnetospheres in the solar system, all quite different from each other. The detection of tens or hundreds of analogs will be a revolution comparable to the one that the discovery of exoplanets' orbital parameters has brought to solar system formation models. I will make a brief review of the theoretical bases of this research, an inventory of the observations with emphasis on recent detections, and I will give some perspectives.