

Atmospheric modeling of Uranus and Neptune

Gwenaël Milcareck

Thesis directors : Franck Montmessin (LATMOS), Sandrine Guerlet (LMD)

Table of contents

- 1) Characteristics of Uranus and Neptune
 - A) Introduction
 - B) Composition of the atmosphere
 - C) Temperature profile
 - D) Atmospheric dynamics
- 2) Atmospheric modeling
 - A) Deep-flow model
 - B) Shallow-flow model

- 3) Objectives of the thesis
- 4) Model description
- 5) First results for Neptune
 - A) Parameterization of cloud layers
 - B) Atmospheric circulation
- 6) Conclusion

1. Characteristics of Uranus and Neptune

A. Introduction

- Uranus and Neptune have similar characteristics :
 - Ice giants ;
 - Same size, mean radius = \sim 25000 km ;
 - Fast rotators (rotation period between 16 and 17h);
 - Long orbital periods, low solar irradiance.
- But two major differences:
 - Very different obliquity ;
 - Internal heat flow equal to ~0 for Uranus.

B. Composition of the atmosphere

- Atmosphere composed mainly of hydrogen and helium (H₂: ~82 %, He : 15 %, CH₄ : ~2 à 4%).
- Cloud layers :
 - CH_4 between 0,01 and 1 bar ;
 - H_2S between 2 and 10 bars ;
 - NH_4HS between 20 and 40 bars ;
 - H_2 Obetween 50 and 100 bars.
- Hydrocarbon hazes (C_2H_6 , C_2H_2 ,...) at high altitude (<0,1 bar).

C. Temperature profile

• Temperature profiles observed by Voyager 2 :

D. Atmospheric dynamics

- Fastest wind in the solar system (~ -400 m/s on Neptune).
- Retrograde jet at the equator (subrotation) and 2 prograde jets in mid-latitude.

Opposite : latitudinal profile of the zonal wind on Uranus and Neptune at ~100 mbar (Mousis et al, 2017).

D. Atmospheric dynamics

Near infrared images of Uranus (a) and Neptune (b). Light areas correspond to clouds. (Mousis et al, 2017; De Pater al, 2014).

2. Atmospheric modeling

• A. Deep-flow model

- Presumed presence of several convective cylinders in differential rotation and parallel to the axis of rotation on rapidly rotating planets.

Presence of a subrotation on Uranus and Neptune with an idealized model (Aurnou et al., 2017; Soderlund et al., 2013).

Above: diagram of the deep-flow model (Liu and Schneider, 2008).

2. Atmospheric modeling

- B. Shallow-flow model :
 - Only weather process.

- Subrotation reproduced with prograde jets but idealized models (simplified radiative transfer and neglected seasonal effects) (Lian and Showman, 2010; Liu and Schneider, 2010).

Opposite: zonal wind on Uranus and Neptune at 25 mbar (Liu and Schneider, 2010).

3. Objectives of the thesis

- The objectives of this thesis are:
 - to reproduce and understand the zonal jet-current structure of these atmospheres with a realistic shallowflow model. This will include studying the role of waves and instabilities in the establishment of jet streams;
 - to simulate the vertical structure and size distribution of aerosols and to compare them with observations.

4. Model description

- The General circulation model used in this thesis is Dynamico (LMD) :
 - Dynamic core that numerically solves atmospheric primitive equations ;
 - 1D physical parameterizations coupled to the dynamic core (for example, radiative transfer, convection, condensation, etc.);
 - Icosahedral grid.

- Assumptions used for Uranus and Neptune:
 - Neglected diurnal cycle and addition of a friction layer at the bottom of the model.

5. First results for Neptune

- A. Parameterization of cloud layers
- Simulations between 3 bars and 0.0003 bars : only $\rm H_2S$ and $\rm CH_4$ cloud layers.
- Several cloud models for Neptune.
- These models depend on assumptions about particle size, opticals constants, cloud opacity or altitude of the clouds.
- Choice of the model: we look at the difference between the temperature and albedo obtained for each cloud model with a 1D simulation and the temperature and albedo measured by Voyager 2.

A. Parameterization of cloud layers

The best model with our assumptions is Irwin et al, 2013 (b) for Neptune.

13

- Two simulations at two different resolutions over 40 pressure levels :
 - A simulation with a resolution of 2° ;
 - A simulation with a resolution of 1° .
- The temperature profile is initialized on the whole grid.

- Vertical cross-section of mean zonal wind speed (resolution : 2°).
- Prograde jet at the equator at ~100 mbar (10⁴ Pa). But there is a retrograde jet on the observations of Voyager 2 at this pressure level.

- Vertical crosssection of mean zonal wind speed (resolution : 1°)
- Intense prograde jet in the stratosphere (~130 m/s)
- More jets in this simulation.
- Important difference between 1° and 2° simulations

- However, the radiative-convective equilibrium hasn't been reached in these simulations yet. It is estimated at about fifteen Neptunian years. At present, only 2 Neptunian years were simulated.
- Simulations still need to be extended to obtain a balanced temperature profile.

6. Conclusion

- For now, the simulations don't reproduce the observed zonal wind.
- The resolution affects the zonal wind (inverse energy cascade : transfer of energy by the eddies from the small scales to the large scales)
- Future work :
 - To analyze eddies activity ;
 - To analyze the effect of the friction layer at the bottom of the model.

Thank you for your attention !

