

History of Mars: Timeline

Wordsworth et al. 2016

Geologic Map of Mars

Amazonian/Hesperian? **Terrains**

Tharsis buldge

Impacts

Noachian Terrains

https://doi.org/10.3133/sim3292

By: Kenneth L. Tanaka, James A. Skinner, James M. Dohm, Rossman P. Irwin III, Eric J. Kolb, Loren Modertazzp Thomas Platz, Gregory G. Michael, and Trent M. Hare

Observations

Jezero Crater, Perseverance Landing Site Landing Date:18/02/2021

Gale crater (see Williams et al 2013) Open/close basin lakes : Fassett and Head 2008

Geomorphology

Mineralogy

In-situ analysis

By ESA's Mars Express 9 November 2018 66°E/17°S

Faint Young Sun

• ~ 3.8 Gya the Sun was 75% dimmer than today (Cough 1981)

Mars received ~440W.m-2 --> BB T° = 210K >65K of GHW (x2 Earth and x9 present Mars)

 Mean semi major axis can not have changed significantly (Laskar 2004)

How liquid water is able to form in such conditions?

Atmospheric Content

Mars atmospheric evolution is poorly constrained

CO2: dominant, up to 2/3 bar ?

H20: initial content?

Greenhouse gases: CH4, SO2, NH3, H2, ...

The Noachian saw an evolving atmosphere

Sources: CO2 from crust, volcanism outgassing,...

<u>Sinks</u>: crust absorption, atmospheric escape,...

"Dense late Noachian atmosphere can only have been remove subsequently by surface processes" Wordsworth et al 2016

Ito et al 2020

Extreme Events

Impacts

Dating from crater counting:

→ uncertainty (we need samples!)

Surface changes

Source of H20, CO2, ...

Hartmann & Neukum 2001

Jonas F.M. (2015) Nature of the Threat / Historical Occurrence.

Volcanism

Tharsis bulge: True Polar Wander

Source of CO2, SO2, heat...

Olympus Mons seen by Viking1 1978

Topography

North-South Dichotomy

Utopia basin (>4.2Gy)

Hellas and Argyre basins

 Rising of Tharsis buldge and True Polar Wander started
~ 3.7Gy (Bouley et al. 2016)

Valley Networks in pre-True Polar Wander

Noachian/Early Hesperian valley networks distribution and density before and after TPW.

Bouley et al 2016

Pre TPW

Valley networks occur within a latitudinal band of ±14° centred at 24° S

Early Mars Climate: Different Scenarios

Warm and Wet Early Mars

- CH4
- SO2
- NH3

Kerber et al. 2015, Tian et al 2010,...

• H2?

Ramirez et al 2014, Turbet et al 2020

• H202 (Ito et al 2020) / Supersaturated H20?

Modeling the Climate of Mars: GCM

• Global Climate Models (or GCM) developed at LMD

- Dynamics: Solving Primitive Equations of Meteorology
- Physics: Rad. transfer, turbulence, water cycle, dust cycle...
- --> High computational cost : up to 30/40 years of simulation max.

How to properly simulate the hydrological cycle?

The Mars Evolution Model

- GCM asynchronously coupled to a hydrological model
 - --> Simulation over thousands years!

Study of lakes and rivers formation

• ERC "Mars Through Time" project leaded by François Forget

Questions?

BREAKING!!!

Mars during the New MY 36

Credits: Antoine Bierjon

