Studying the galactic center at very high energies with H.E.S.S. and gammapy

Samuël Zouari

APC - Astrophysics & High Energies

(Supervisors : Régis Terrier & Anne Lemière)

11 février 2021

1 The H.E.S.S experiment

- 2 The galactic central region
- 3 Studying HESS J1745-290
 - Spectrum
 - Variability

Surveying the sky at very high energies

Since 2004, H.E.S.S. (High Energy Stereoscopic System) is observing gamma rays at energies ranging from 300 GeV to 100 TeV, using the Vavilov-Cherenkov effect in the atmosphere

Figure 1 – H.E.S.S. on site in Namibia

Detecting and reconstructing events

Hinton JA, Hofmann W. 2009. Annu. Rev. Astron. Astrophys. 47:523–65

γ rays or cosmic rays?

 10^5 cosmic rays for each γ ray \longrightarrow need to discriminate γ rays from the CR background

Figure 2 – Images of EM shower (left) and hadron shower (right) on a single telescope

Identifying gamma photons

Both the reconstruction of events and $\gamma/{\rm CR}$ discrimination can be done in various ways.

Reconstruction: either using a 2D models (to fit the image on the camera) or a 3D model of the shower in the sky.

 γ /CR discrimination : a multivariate analysis using Boosted Decision Trees over different parameters and criteria (geometrical, convergence of reconstruction methods, etc.)

A cut can be applied to remove events whose "charge" (meaning photo-electrons) is too low.

Different choices of methods lead to different analysis channels and configurations (one channel has different configuration depending on what is needed)

H.E.S.S. galactic plane survey

1 The H.E.S.S experiment

- 2 The galactic central region
- 3 Studying HESS J1745-290
 - Spectrum
 - Variability

A few facts

The inner 200 pc:

- high quantity of molecular gas
- high star formation rate
- high supernovae rate (1 every few milennia) \longrightarrow makes it a good location for cosmic ray (CR) injection and acceleration

The supermassive black hole SgrA*:

- very likely there
- a good candidate for CR acceleration...
- ... but it's currently relatively "inactive"

The galactic centre with H.E.S.S

Figure 3 – Top: Residual emission with CS gas outline. Bottom: significance map. Source: H.E.S.S Collaboration 2018

HESS J1745-290 = SgrA*?

Figure 4 – Left : from Wang et al. (2013) X-ray map of the GC (1-9 keV, with Chandra), dashed circle radius is 4".

Right: VLA observation with HESS J1745-290 position

1 The H.E.S.S experiment

- 2 The galactic central region
- 3 Studying HESS J1745-290
 - Spectrum
 - Variability

Studying HESS J1745-290

Objective: Look for long term variability of HESS J1745-290 source. This could help identify the source as the TeV counterpart of Sgr A^* if a variability was found.

Approach: Time resolved 3D analysis of HESS J1745-290 taking into account diffuse emission with gammapy (modelled as in the 2018 H.E.S.S paper)

Goals:

- Determine HESS J1745-290 intrinsic spectrum
- Establish its light curve over the last 15 years
- Study systematic effects comparing with diffuse emission

What observation runs should we choose?

To alleviate systematics :

- limit zenith angle of observations to 50°
- limit selected area to 1.8° around the pointing direction

Instrument Response Functions (IRF) are less trustworthy outside these conditions.

HAP-fr ash and HAP-hd std ImPACT configuration do not give the exact same set of runs to work with, e.g : there are no valid runs for 2017 with HAP-fr $\,$

Fitting a source model to observational data

We limit the "box" where we fit our models

- in space : only the central (4°,3°) in galactic coordinates, around (I=0°,b=0°), and excluding the vicinity of HESS J1745-303
- and in energy : from 500 GeV to 100 TeV

Fitting a point-like source relies a lot on a proper estimate of the background.

Problem: in the central 200 pc, a diffuse emission of gamma rays hinders this estimation.

1 The H.E.S.S experiment

The galactic central region

- 3 Studying HESS J1745-290
 - Spectrum
 - Variability

Spectral models

The event density depends on the energy as an [Exponentially cutoff] power law (ECPL) :

$$\frac{dn}{dE} = \phi(E) = \phi_0 \left(\frac{E}{E_{ref}}\right)^{-\Gamma} \exp(-(\lambda E)^{\alpha})$$

with:

- \bullet $\alpha = 1$
- $E_{ref} = 1.0 \text{ TeV}$
- $\Gamma = 1.5 2.3$ (from hardest to softest)
- $\lambda = 1/E_{cutoff}$, with a cutoff energy around 10 TeV fot HESS J1745-290

 λ and Γ are *heavily* correlated, $\lambda=0$ TeV⁻¹ for an assumed infinite cutoff energy (or no cutoff).

Spatial models

Figure 5 – left : DE model only, right : DE + G09+01 + HESS J1745-290 (from HAP-hd analysis) both smoothed with 0.05 deg kernel

3D Fitting of the spectra

Doing a 3D (spatial + spectral) fit allows to seperate the central source from the diffuse emission (impossible with 1D spectrum analysis)

3D analysis done with a "joint fit" of the data from the 3 periods of the HESS intsrument (HESS1, HESS2 and HESS1u)

- HESS J1745-290 (referred as "GC") : point-like with ECPL spectra
- Diffuse emission (DE): template model with PL (or ECPL) spectra
- G09+01 : point-like with PL spectra

Morphological modelling of the DE

For the diffuse emission, from H.E.S.S Collaboration 2018, using three components :

- ullet Dense gas component (taken from a CS gas map, with a $\sigma=1.11$ deg on top)
- ullet Small scale component (centered on SgrA*, $\sigma=0.11$ deg)
- Large scale component ($\sigma_{x} = 0.97$ deg and $\sigma_{y} = 0.22$ deg)

Following the final model of the article, the relative intensities of the component are fixed at 4.3/1.03/2.68

Spectral models and flux points (joint fit (hap-fr))

Fitted spectra and "flux points" (left : HAP-fr, right : HAP-hd)

Figure 6 – orange : $E^2 \times \text{Flux}$ (TeV.cm⁻².s⁻¹) for HESS J1745-290, red : diffuse emission, points are relevant flux points : using a given spectral model, the normalisation is re-evaluated on each energy bin.

Spectral models and flux points (joint fit (hap-hd))

Spectral parameters

parameter	HAP-fr	HAP-hd
index GC	1.83 ± 0.06	1.90 ± 0.05
index DE	2.24 ± 0.02	2.33 ± 0.02
E_{cutoff} GC	$6.38\pm0.7~\text{TeV}$	8.26 ± 0.6 TeV

Table 1 – Without an energy cutoff for the diffuse emission

Fit quality

Figure 7 – For HAP-hd channel, with all the data available. Left: Li-Ma significance (applied on data - predictions). Right: distribution of significances compared to a normal gaussian

A cutoff energy for the diffuse emission?

Figure 8 – Taken from H.E.S.S. Collaboration 2016, later data seem to indicate that the diffuse spectrum shows a cut-off above 20 TeV

1 The H.E.S.S experiment

The galactic central region

- 3 Studying HESS J1745-290
 - Spectrum
 - Variability

HESS J1745-290 variability, back in 2009

Figure 9 - Source: Aharonian et al. 2009

How we look for variability

We prefer to look at fluxes averaged over a year :

- Observations are taken in a few months period every year
- run to run variation (28 minutes time scale) is relevant when looking for X-ray flare counterparts, which is so far inconclusive

We use the diffuse emission as our "constant" reference point to evaluate relative variations of HESS J1745-290 : the diffuse emission isn't suppose to vary on the year timescale.

Flux ratio GC source/DE (1 to 10 TeV)

	HAP-fr	HAP-hd
constant	0.322 ± 0.01	0.342 ± 0.01
p-value	0.70	0.36

Fit quality

Figure 10 – For HAP-hd channel, 2004 only. Left : Li-Ma significance map. Right : distribution of significances compared to a normal gaussian

Conclusion

- No evidence for yearly variability, independently of model hypothesis
- Disagreement on spectral parameters between the two data configurations
- Overall ower cutoff energies for HESS J1745-290 than previously measured (possibly because diffuse emission contribution was removed)
- spectral shapes found are highly period dependent
- improvements to be made on later datasets (post-2013)

Thank you for your attention