

Analysis of organic matter and mineral phases in bulk chondrites by MIR Refelctance Hyperspectral Imaging

Yann ARRIBARD

Institut d'Astrophysique Spatiale, Université Paris-Saclay, Orsay

Solar system formation

=> We focus on the residues of the formation

The different meteorites

Corps parents non différenciés : Chondrites

Carbonaceous

Ordinary

Enstatite

The carbonaceous chondrites

Fusion crust(black)

- Composition: Chondrule (=spherical silicate inclusion in the matrix) (light): mainly

olivine (= (Mg,Fe)₂SiO₄) and pyroxene (= (Mg,Fe)SiO₃)

Matrix: mainly phyllosilicates (hydrated silicates) (dark)

The most interesting one for the organic matter

Météorite Paris

Murchison, 28/09/1969, Australie

The organic matter of chondrites

Objectives of the thesis

Characterize the primitive extraterrestrial organic matter in situ

- ⇒ Understand the physico-chemical interactions between the organic and mineral phases to the micrometric scale.
- ⇒ Reconstruct the chemistry at the origin of the formation and evolution of the organic matter

Methods

TOF-SIMS mass spectrometry

complementarity

MIR reflectance hyperspectral imaging and raman spectroscopy

- Chemical characterization of the organic and mineral matter
- Detection of organometallic molecules

- Identification of chemical fonctions
- Characterization of hydration
- Characterization mineralogic

Multi-technic analysis of chondrites

Cold Bokkeveld CM2,2

Paris CM2,8

Tuxtuac LL5

Carbonaceous chondrites

Ordinary Chondrites

Chondrites

MIR hyperspectral imaging

Quasar Software

Photography with a macroscope of the analyzed surface

K-mean clustering of indrared data of the analyzed surface

Bue: Amorphous hydrated silicates = 86,42 %

Red : Olivine = 2,99 %

band

Green: Pyroxène = 3,79 %

Yellow: Amorphous hydrated silicates + carbonate + sulfate = 2,47 %

Orange: silicates hydratés et désordonnés + carbonate = 4,33 %

Analyse of the cluster of the matrix

Photography with a macroscope of the analyzed surface

Mapping of the position of the maximum intensity of the stretching band of SiO in the phyllosilicates cluster

Mapping of the area of the stretching band of Ch liaison in the phyllosilicate cluster

Raman spectroscopy

Rotundi et al, 2008

TOF-SIMS mass spectrometry

Secondary Ion Mass Spectrometry (SIMS)

ION-TOF (Liban)

Primary beam: Bi₃*
Energy: 25 keV

Goal:

- Characterization of the chemical structure of the organic matter
- Comparison of the spectral print of chondrites
- Spatial localisation

Paris (CM2,8)

Noun M., Baklouti D. et al., Life, 2019

TOF-SIMS mapping (commercial spectrometer, Bi₃+, 25 keV) of Paris meteorite

Thank you for your attention

