

Elbereth 2021

Development of a Closed Cycle Dilution Refrigerator for future astronomical missions

Valentin SAUVAGE

CMB OBSERVATIONS

FROM OCDR TO CCDR

SYSTEMATIC EFFECTS

3

FUTURE FOR CCDR

Cosmic Microwave Background : predicted and observed

First CMB observation

Ground observations ?

Wavelength

SYSTEMATIC EFFECTS

In space, no one can hear you scream

SYSTEMATIC EFFECTS

FUTURE FOR CCDR

Planck **C**esa **2009**

Planck legacy

Launch : 14 May 2009 2 instruments : HFI () and LFI ()

- Map the temperature anisotropies of CMB
- Map the polarisation of CMB
- Measure of cosmological parameters

Planck legacy

Many contributions to the astrophysical signal :

- CMB
- Galactic dust
- Synchrotron
- CO emission ray

 -10^3 -10^2 -10 -101 10 10^2 10^3 10^4 10⁶ 10⁵ 10 30-353 GHz: δT [μK_{cmb}]; 545 and 857 GHz: surface brightness [kJy/sr]

Planck legacy

CMB temperature anisotropies are between -300 μ K and 300 μ K around 2.726 K. For a 5 μ K sensibility, HFI detectors need to be cool down to 100 mK.

Planck legacy

CMB temperature anisotropies are between -300 μ K and 300 μ K around 2.726 K. For a 5 µK sensibility, HFI detectors need to be cool down to 100 mK.

B-modes of the CMB

Curent instruments with enough sensitivity to detect secondary B-modes

Goal : Primordial B-modes

Curent instruments with enough sensitivity to detect secondary B-modes

Plank HFI cryogenic system

Planck HFl cryogenic system

How to reach 100 mK?

 50 K - Radiative Shield • 18K - Hydrogen sorption cooler • 4K - Joule-Thompson mechanical cooler • 1.6K - Joule-Thompson process 100mK - ³He/⁴He dilution

Open Cycle Dilution Refrigerator (OCDR) on Planck HFI

³He 12000 L STP tank at 295 bars)

⁴He

36000 L STP (3 tank at 295 bars)

³He/⁴He

Release in space

Empty tanks = End of duty

I.6K

Many missions will require such temperature

Emission from the firsts galaxies

Cold temperature and stability

And OCDR on the future mission Athena X-IFU?

Lifetime 2.5 years Planck HFI **Cooling power** $0.2 \ \mu W @ 100 \ mK$

Lifetime 3 years Athena X-IFU **Cooling power** $0.8 \ \mu W @ 50 \ m K$ 3 μW @ 100 mK

Too expensive

SYSTEMATIC EFFECTS

FUTURE FOR CCDR

How to close the system ? Helium 4 line

Fountain Pump

Heat

How to close the system ? Helium 3 line

The Closed-Cycle Dilution Refrigerator (CCDR)

A Demonstrator Model (DM) developed by Gerard Vermeulen et al. validate the technology at a TRL5 for temperatures down to 50 mK.

> The goal is to bring this system to a TRL6 called Engineering Model (EM)

Some critical components

Still

Phases separation in microgravity environment

A sponge to confine the mixture

With gravity

Separate the two isotopes on the still

Without gravity

Solution ?

Porous material

Internal report

Systematic effects studies

Develop a physical model of the CCDR

And later ?

Experiment

Simulations

SYSTEMATIC EFFECTS

Model

Elbereth 2021

Thanks for your attention

Valentin SAUVAGE