# Seismic analysis of red giants on the Asymptotic Giant Branch



Guillaume Dréau, LESIA – Observatoire de Paris Supervisors: Benoît Mosser, Yveline Lebreton



Elbereth conference, 11th of February, 2021



## Stellar evolution

RGB: Red Giant Branch AGB: Asymptotic Giant Branch

• Disentangle evolved AGB stars from evolved RGB stars?



Color-magnitude diagram including stars in the globular cluster M5, Canada-France-Hawaii Telescope (CFHT) *Credit: Sandquist, E. & Bolte, M. 2004* 



HR diagram  $(1M_{\odot})$  locating the Red Giant and the Asymptotic Giant Branches Credit: C. Gehan

## Stellar evolution

• Yet, structural differences between RGB stars and AGB stars



Internal structure evolution for RGB and AGB stars *Credit: C. Gehan* 

## Pressure mode identification

Constructive interferences give rise to the pressure-mode oscillation spectrum • Fourier transform Light curve **Power spectrum** 106 1000 Spot modulation 07 Rotation 10 500 Flux (ppm) PSD 102 Granulation Oscillations 10<sup>0</sup> -500Photon no 10-8 -10001000 10 100 550 650 500 600 700 Frequency  $(\mu Hz)$ Time (days)

Kepler F star KIC 3733735, Credit: Garcia R. A. 2015

## Pressure mode identification



KIC 1719297,  $\Delta 
u = 1.21 \, \mu$ Hz

#### II – Characterising the second helium ionisation zone (HeII)



II – Characterising the second helium ionisation zone (HeII)

## How to probe HeII?



 $\Gamma_1 = f$  (acoustic radius), highlighting the second helium ionisation zone (HeII)

$$\Gamma_1 = \left(\frac{\mathrm{d}\,\ln P}{\mathrm{d}\,\ln\rho}\right)_s$$

- Sharp variation of Γ<sub>1</sub> over a short distance with respect to the wavelength of the oscillations
- Introduce a modulation in the p-mode pattern:

$$v_{n,\ell}^{UP} \to v_{n,\ell}^{UP} + \delta v_{n,\ell}$$

II – Characterising the second helium ionisation zone (HeII)

# How to probe HeII? (1) $v_{n,\ell}^{UP} = \left(n + \frac{\ell}{2} + \varepsilon + d_{0\ell} + \frac{\alpha}{2}(n - n_{max})^2\right) \Delta v$

• Glitch: Modulation in the mode frequencies caused by HeII

Measured in the oscillation spectrum  $\Delta v_{glitch}(n, \ell) = v_{n+1,\ell} - v_{n,\ell}$   $\Delta v_{noglitch}(n) = v_{n+1,\ell}^{UP} - v_{n,\ell}^{UP}$ Inferred from (1), without glitch

• 
$$\delta_{g,obs} = \Delta v_{glitch}(n, \ell) - \Delta v_{noglitch}(n)$$

II – Characterising the second helium ionisation zone (HeII)

# How to probe HeII? (1) $v_{n,\ell}^{UP} = \left(n + \frac{\ell}{2} + \varepsilon + d_{0\ell} + \frac{\alpha}{2}(n - n_{max})^2\right)\Delta v$

• Glitch: Modulation in the mode frequencies caused by HeII





Modulation of  $\Delta 
u(n)$  in frequency, KIC 9100325,  $\Delta 
u = 0.97~\mu$ Hz



## Results: Phase $\Phi$



Dréau et al. 2021, submitted & accepted in A&A

## Results: Phase Φ





 Classification method based on the acoustic offset ε, but they did not identify the clear physical basis

 $\epsilon(\Delta \nu)$ , local measurement of the large separation  $\Delta \nu$ Credit: Kallinger et al. 2012

### Results: Phase Φ



Dréau et al. 2021, submitted & accepted in A&A

## What have we learnt?

→ Clear **structure differences** between RGB and AGB stars: HeII



 The classification method based on the acoustic offset *\varepsilon* is in fact based on the signature of HeII



• Different glitch amplitude, correlated with a different variation in  $\Gamma_1$  and a different temperature at HeII

→ Work in progress: use the seismic parameters to constrain stellar models

Thanks for your attention !

### Supplementary materials



# Outline

#### I –Context and scientific concerns

- The necessity to better constrain stellar structure at evolved stages
- Extract signatures of evolution in the oscillation spectrum
- Design a classification method for evolved stars
- II Characterising the second helium ionisation zone (HeII)
  - Modulation induced in the acoustic mode frequencies
- III Disentangling RGB and AGB stars

# Asteroseismology

Probe stellar interiors with waves that propagate inside stars and which are sensitive to stellar evolution



• For evolved giants, main source of information: pressure waves

# Asteroseismology

Sun-like pulsators Credit : Cunha et al. 2007

Probe stellar interiors with waves that propagate inside stars and which are sensitive to stellar evolution

#### Pressure waves



- Excited by turbulent convection near stellar surface
- Propagate in the whole star

#### **Gravity** waves



- Excited near the transition of radiative and convective zones
- Propagate in regularly stratified regions: radiative zones
   19

## Distinction RGB/AGB stars

• Method to disentangle RGB and AGB stars based on  $\varepsilon$ 

$$\nu_{n,\ell}^{UP} = \left(n + \frac{\ell}{2} + \varepsilon + d_{0\ell} + \frac{\alpha}{2}(n - n_{max})^2\right) \Delta \nu$$



 $\epsilon(\Delta \nu)$ , local measurement of the large separation  $\Delta \nu$ Credit: Kallinger et al. 2012

#### Aim of this presentation:

- Characterise evolved stars through their seismic signature in the oscillation spectrum
- Design a physical method to disentangle RGB stars from AGB stars
- Understand the results of *Kallinger et al.* 2012

III- Disentangling RGB and AGB stars

# Results: Amplitude $\mathcal{A}$



III- Disentangling RGB and AGB stars

Why  $\mathcal{A}_{RGB} < \mathcal{A}_{AGB}$ ?



 $\mathcal{A}_{glitch} = f(\Delta \nu)$ , an initial mass  $1M_{\odot}$  star computed with *MESA* 

### Why $\mathcal{A}_{RGB} < \mathcal{A}_{AGB}$ ?



- Intuitively, we can think the depth of the dip of  $\Gamma_1$ , noted  $H_{HeII}$ , plays a role
- We expect large *A* for large *H<sub>HeII</sub>* (to be quantitatively confirmed)

Why  $\mathcal{A}_{RGB} < \mathcal{A}_{AGB}$ ?



At fixed  $\Delta \nu$ ,  $H_{HeII,AGB} > H_{HeII,RGB}$ 

At first glance, models agree with observations:  $\mathcal{A}_{AGB} > \mathcal{A}_{RGB}$ 

III- Disentangling RGB and AGB stars

Why  $\mathcal{A}_{RGB} < \mathcal{A}_{AGB}$ ?



- Some evidence that  $H_{HeII,AGB} > H_{HeII,RGB}$  linked to a difference of temperature at HeII, noted  $T_{atHeII}$
- Clear **correlation** between *H<sub>HeII</sub>* and *T<sub>at HeII</sub>*

III- Disentangling RGB and AGB stars

## Results: Phase $\Phi$



Stellar models:  $\Phi_{AGB} > \Phi_{RGB}$  in disagreement with observations

We need to implement more realistic microphysics and macrophysics

• Work in progress

## Results: Period $\mathcal{G}$



- G decreases towards low v<sub>max</sub>
- Globally,  $G_{AGB} \approx G_{RGB}$  at given  $v_{max}$
- Dashed line:

 $\mathcal{G}_{RGB} = (1.922 \pm 0.041) + (0.009 \pm 0.002) \nu_{max}$ 

•  $G_{AGB}$  more scattered than  $G_{RGB}$ 

G<sub>AGB</sub> may be overestimated because of mixed modes

## Results: Period $\mathcal{G}$

Reminder: G is directly linked to the location of HeII, noted  $t_{HeII}$ : •



Models agree with observations: •

 $t_{\text{HeII}} = f(\Delta \nu)$ , an initial mass  $1M_{\odot}$  star computed with MESA

 $t_{HeII} = 1$ 

### Why $\Phi_{AGB}$ different from $\Phi_{RGB}$ ?





## Why $\Phi_{AGB}$ different from $\Phi_{RGB}$ ?



#### **III-** Disentangling RGB and AGB **Local effects: glitches** (1) $v_{n,\ell}^{\text{UP}} = \left(n + \frac{\ell}{2} + \varepsilon + d_{0\ell} + \frac{\alpha}{2}(n - n_{max})^2\right) \Delta v$



stars