

European Research Council

Physical properties of cosmic filaments

DANIELA GALÁRRAGA-ESPINOSA

IAS - Université Paris-Saclay, France

Elbereth Conference, February 2021

Supervisors: Nabila Aghanim and Mathieu Langer Main Collaborators: Hideki Tanimura, Céline Gouin, Nicola Malavasi

INTRODUCTION: MATTER IN THE UNIVERSE

According to the $\Lambda\text{-}\mathsf{CDM}$ model:

IllustrisTNG simulation

des doctorants en astronomie et astrophysique en lle de France

Join us on our numerical journey! >>> February 2021, 8 – 12

Filaments!

INTRODUCTION: COSMIC FILAMENTS

Cautun+ 2014

At z=O (today)

But cosmic filaments are hard to observe (missing baryon problem!),

not well understood...

A global picture is still **lacking**...

~ **50% of the mass** of the Universe is today contained in cosmic **filaments**

We need to **better understand** these structures, that are the **place** of **galaxy evolution!**

Characterisation of cosmic filaments

Focus on two directly observable tracers of matter:

1) From the galaxy distribution

Galarraga-Espinosa+ 2020a

2) From the study of gas

Galarraga-Espinosa+ 2020b

Theory is not well known —> Study in numerical simulations

Focus on the Universe today : **z** = **O**

THE SIMULATION DATA

IllustrisTNG

Focus on the Universe today : **z** = **O**

These simulations are publicly available

	TNG300-1	Magneticum	TNG300-2	TNG100-2	Illustris-2	
Box size [Mpc ³]	302.6 ³	500^{3}	302.6^{3}	110.7^{3}	106.5^{3}	
DM resolution $[M_{\odot}/h]$	4.0×10^{7}	6.9×10^{8}	3.2×10^{8}	4.0×10^{7}	3.5×10^{7}	
Density of tracers [Mpc ⁻³]	10.0×10^{-3}	10.1×10^{-3}	5.4×10^{-3}	10.1×10^{-3}	16.9×10^{-3}	
Cosmology	Planck 2015	WMAP7	Planck 2015	Planck 2015	WMAP7	
Comments	Reference	Comparison	Resolution effects	Physical models	Physical models	
	Nelson+ 2019	Hirschmann+ 2014			Genel+2014 Sijacki+2015	
	Pillepich+ 2019	Ragagnin+ 2017			Vogelsberger+ 2014b	
betection of filaments with DisPerSE Coustie + 2010 betection algorithms: see talk of Tony Bonnaire to the cleection algorithms to						

How are Galaxies distributed around Filaments?

TAKE HOME MESSAGE

Galarraga-Espinosa+ 2020a

Galaxies are not distributed in the same way around

filaments of different lengths

Short	Long		
Short and puffy	Long and thin		
$r_2 \sim 5 \mathrm{Mpc}$	$r_2 \sim 3 \mathrm{Mpc}$		
Live in denser environments, trace over- dense regions	Trace less-dense environments		
May correspond to bridges of matter between over-dense structures (clusters)	May correspond to cosmic filaments shaping the large scales of the Cosmic Web		
Formation history may be dominated by gravitational forces of collapse (matter from the low to high density zones)	Formation history may be dominated by dark energy forces (cosmic accelerated expansion and stretching of the Cosmic Web)		
Two populations also predicted by theory (caustics) Feldbrugge+ 2018	Other studies of galaxies around filaments in simulations: Kraljic+ 2018, 2019 Ganeshaiah-Veena+ 2018, 2019, 2020		

What about gas?

Properties around different populations of filaments?

2) Study of gas around filaments

Galarraga-Espinosa+ 2020b

DIFFERENT GAS PHASES

Separation of gas in different phases

Phases as in Martizzi+ 2019

TNG300-1 simulation

DIFFERENT GAS PHASES

Phases as in Martizzi+ 2019

WHAT IS THE STATE OF GAS AROUND FILAMENTS?

	Density [cm ⁻³]	Temperature [K]	Comments
Diffuse IGM	$n_{\rm H} \le 10^{-4}$	$T \le 10^5$	Gas in the lowest-density regions of the cosmic web.
WHIM	$n_{ m H} \leq 10^{-4}$	$10^5 < T \le 10^7$	Gas that has been accreted onto cosmic structures and heated by shocks.
WCGM	$n_{\rm H} > 10^{-4}$	$10^5 < T \le 10^7$	In the surroundings of galaxies, sensitive to galactic physics.
Halo Gas	$n_{\rm H} > 10^{-4}$	$T \le 10^5$	In the interstellar medium of galaxies, located inside or near them.
Hot Gas	no cut	$T > 10^{7}$	Shock-heated gas located in the denser regions of the cosmic web.

WHAT IS THE STATE OF GAS AT FILAMENT CORES?

Better understand **filament cores (<1 Mpc)**:

Different gas content in short and long filaments

Galarraga-Espinosa+ 2020b

How does the Temperature evolve?

Galarraga-Espinosa+ 2020b

• **Temperature** profiles Short Medium Long 10⁶ haloes included T [K] 10⁵ 10^{-1} 10² 10^{0} 10¹ r [Mpc] Including haloes Temperature rises (haloes contain hotter gas)

$$T_{\rm core} = 4 - 13 \times 10^5 \,\mathrm{K}$$

- Different profiles for different types of filaments (short are 3x hotter)
- All filaments: isothermal core up to r ~ 1.5 Mpc

In agreement with

Klar & Mücket 2012 Gheller & Vazza 2019 Tuominen+ 2020

PRESSURE AND COMPTON Y-PROFILES

CONCLUSIONS

Different populations of filaments at z=0:

- from the galaxy distribution

Galarraga-Espinosa+ 2020a

- from the **gas content & properties** Galarraga-Espinosa+ 2020b

• Overview of gas properties at different distances from the spine:

More Slides...

FILAMENT CATALOGUES

(Sousbie+ 2011)

applied to the galaxy catalogues.

DisPerSE

Detection based on the **topology** of the density field Publicly available code Maximum density critical points Saddle critical points **Bifurcation points** Over-dense regions Segment delimitation

Filaments are sets of segments connecting **maximum density** critical points to **saddles**

Galaxy selection

Cut in stellar mass following **observational** limits

$$10^9 \le M_* \,[\mathrm{M}_\odot] \le 10^{12}$$

Other methods also available (NEXUS+, T-Rex, Bisous, ...) Cautun+ 2013 Bonnaire+ 2020 Tempel+ 2016

But best choice to trace the **spine**

THE SIMULATION DATA

Gas and galaxies from **TNG300-1** (slice)

http://www.illustris-project.org

Gas in IllustrisTNG:

- Voronoi **cells** (with different volumes) (refined and de-refined according to mass target of $7.6 \times 10^6 \,\mathrm{M_{\odot}}/h$)
- Baryonic processes (sub-grid): "TNG model", specifically calibrated on observational data Pillepich+ 2019

WHAT IS THE TEMPERATURE?

Galarraga-Espinosa+ 2020b

PRESSURE PROFILES

