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The Magnetospheric Multiscale

Mission

%/;1 pt 2
MMS is constituted by four identical

satellites evolving in a tetrahedron
formation separated at electron scales.

investigates:

* how the Sun’s and Earth’s magnetic fields
connect and disconnect, explosively
transferring energy?

* |t targets the very small electron diffusion
region.

* Unprecedented high spatial and time
resolutions.

* The key to understanding reconnection
regions near Earth, where the most
energetic events originate.




What is a Dipolarization

Fronts?

[agielopatse . i B Magnetic reconnection

Magnetosheath
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Definition: DF is a sharp increase in
the northward component of the
magnetic field (Z-direction) .
associated with a fast plasma flow y Tail Lobe
which can be generated by
reconnection or flux tube interchange
instability. it corresponds to a
boundary between a relatively cold
and dense plasma at rest and a hot
tenuous fastly moving plasma.

Date: 02 May 2013

Satellite: Cluster

Depicts: Magnetic reconnection in the tail of
Earth's magnetosphere

Copyright: ESA/ATG medialab

Dipolarization front

Why is studying DF interesting YV . -
and important? T Ring Cuyrent

Yo
I h b d h h Figure 1. Magnetic reconnection inthe magnetosphere during southward magnetic field in the solar wind. Reconnection sites Schematic of the dipolarization front structure in
t a.S ee n Suggeste t at t ey are indicated by two box areas. The LMN coordinate system represents the local normal boundary coordinate system for the Earth's magnetotail (modified from Fu et al.
- - ection at different locations: L is the direction of the reconnecting magnetic field line, M is tangential to the normal and (2012c)). [HFu St al, 2020] .
Cou Id play a_n I m po rtant role I n the in the d\rectlo"l of the electric current, and N is the normal direction to the boundary layer. The figure is modified from Figure '
. . . 1 of Burch et al. [2] under the terms of the Creative Commons Attribution 4.0 International License
global energy dISSIpatlon process (http://creativecommons.org /licenses/by/4.0/). [L Dai et al, 2020]

inside the magnetosphere.

[e.g., (M. S. Nakamura et al., 2002; Fu, Khotyaintsev, Vaivads, Andre, & Huang, 2012; Runov et al., 2009; @
Angelopoulos et al., 1992; Baumjohann et al., 1990)]. @
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DF/fast flow properties [e.g. Runov et

al., GRL 2009, Sergeev et al., GRL,
2009]

* Transition between cold dense
plasma at rest to hot tenuous fastly
moving plasma

* Increase of BL

* Increase of Ve,N&Vi,N

* Increase of Tpara,e~Tperp,e ~1 keV LY —
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Current density comparison between ——
Jpart = en(vi-ve) & Jcurl = (CurlB/mu0)
Jpart is calculated from particle (FPI) data
and Jcurl from magnetic field (FGM) data,
all data are time average 0.3 s.

Small values but good agreement
within <10nA/m2

Hall electric field comparison between ——

E_Hall = JpartxB/(nge) & (JcurlxB/(nge)
=> Good confidence in curl and particle
moments calculations.

Good agreement within 1 mV/m
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MMS - 4 Spacecraft average at 0.3 s
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s lon Ohm’s Law & electron Ohm’s Law
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DF(1): Generalized Ohm's Law analysis {1}

MMS - 4 Spacecraft average at 0.3 s
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DF(1): Generalized Ohm's Law analysis {2}
MMS - 4 Spacecraft average at 0.3 s
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DF(1): Energy conversion
MMS - 4 Spacecraft average at 0.3 s

Energy conversion (Il)
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Summary

> | have shown a DF event detected by MMS with classical signatures consistent with general properties of DF.

- | have found a good agreement between current densities calculated from particles and curl B.

- From Ohm’s law, | have shown that electrons are almost always magnetized whereas ions can be decoupled
from B due to Hall field.

> Energy conversion given by (J.(E+vexB) or (J.(E+VixB)) is not homogeneous at the scale of the tetrahedron:

> In s/c frame: at 4 s/c average value indicates an energy transfer from field to particles (dissipation ~ + 0.023
nW/m3) at the DF crossing.

~ In lon & electron frames: individual s/c values can be positive or negative, Wave activity related to DF will be
studied as well as its role in energy conversion processes.
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My participation and activities (1)
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Communications:
1. EGU, May 4-8, 2020 (virtual), Poster with discussion
hal-02953918v1 Poster
Soboh Algeeq, Olivier Le Contel, Patrick Canu, A. Retino, Thomas Chust et al. Analysis of energy conversion
processes at kinetic scales associated with a series of dipolarization fronts observed by MMS during a substorm
EGU General Assembly 2020, May 2020, Vienna, Austria. (10.5194/egusphere-egu2020-19750)
. Fall MMS SWT organized by GFSC, Online, Oct. 6™, 2020, oral presentation.
. PLAS@PAR scientific day, Oct. 5", 2020, Conference Center at Sorbonne Université, Poster.
. AGU, Dec. 1-17, 2020 (virtual), Poster with discussion
S. Algeeq et al., Energy conversion associated with a series of dipolarization fronts observed by MMS, Virtual
Poster Session SM041, Dec. 15, AGU 2020.
5. EGU, April 19-30, 2021 (virtual), Poster with discussion
Title: Investigation of energy conversion processes and wave activity related to dipolarization fronts observed by
MMS.
6. PhD Day, organized by LPP, Feb. 3", 2021, on line, oral presentation.
7. Elbereth conference, organized by PhD students, Feb. 10", 2021, on line, oral presentation.

Publications:
| am preparing a draft to present these results and including three similar events and to be submitted to JGR.
Algeeq, S., O. Le Contel, P. Canu, et al., title: Homogeneity of energy conversion processes at DF.
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