Calibration and preparation of MIRS instrument observations for the JAXA MMX space mission

Fériel Tache – PhD 1st year PhD advisor: Antonella Barucci

- 1 MMX presentation
- 2 MIRS instrument
- 3 My thesis

MMX-Martian Moons eXploration

- JAXA's mission
- First sample return mission Phobos's satellite
- ✤ To collect at least 10g regolith on Phobos's surface → on two differents sites
- ✤ Return sample on Earth → first arrival/departure to the martian system

- Understanding the origin of the Martian moons
- To constrain processes for planetary formation and material transport in the region connecting the inner and outer solar systems
- To reveal the evolutionary processes of the Martian system in the circum-Martian environments

Instruments on board

ALE SALES
Infra Red S

OROCHI (Optical Radiometer cOmposed of CHromatic Imagers)	Wide-angle camera
TENGOO (Telescopic Nadir Imager for Geomorphology)	Narrow angle camera
LIDAR (LIght Detector and Ranging)	Laser altimeter
CMDM (Circum-Martian Dust Monitor)	Dust detector
MSA (Mass Spectrum Analyzer)	Mass spectrometer
MEGANE	Gamma rays and Neutrons Spectrometer - NASA
MIRS (MMX InfraRed Spectrometer ([0.9-3.6µm])	Imaging spectrometer - CNES

+ Rover (CNES, DLR)

Phobos and Deimos : The Origin

Hypothesis

November 12th, 13th, 2020

MIRS PDR

Mass	11,9 kg
Volume	320x150x400
(instrument)	mm ³

MIRS on MMX Lander

Characteristics :

Spectral band	[0.9-3.6µm]	
Spectral resolution	20nm	
iFOV	0.35 mrad	
FOV	+/- 1.65°	
SNR	> 100 in[2.7- 3.2 μ m] in less than $T_{int} = 2s$	
Detector	256x256 (using 256x250), pixels = 30 μ m	

To characterize Phobos and Deimos 's surfaces and the atmopsheric composition of Mars \rightarrow identifying characteristic spectral signatures in the near infrared range

Phobos :

- To study the surface distribution of the constituent materials of Phobos
- Hydrated and other minerals must be identified :
 - Spectroscopically at a ground resolution of 20m
 - Spatial resolution of 1 m
 - 50 m around the sampling point

Water (ice)	[3,0-3,2 μm]
Hydrated silicate minerals	[2.7-2.8 μm]
Organic matter	[3.33.5 μm]

Deimos :

- To study the surface distribution of the constituent materials of Deimos from spectroscopic information
- Hydrated and other minerals must be identified:
 - Horizontal spatial resolution > 100m

Similarities with asteroids?

Phobos (blue and red units) and Deimos 's spectra derived from CRISM-MRO spectra, extracted from Fraeman et al. (2014)

Combination of several spectra the 0.3-3.6 microns range of Phobos and Deimos extracted from Rivkin et al. (2012)

Similarities with asteroids ?

Many organics have been detected on the surface of many asteroids/comets :

67P Churyumov-Gerasimenko spectra

 We can expect absorption features in the [3.2-3.4µm] regions

• Mars atmosphere : Dust and water transport processes near the Martian surface

- Continuous observations of dust storms, ice clouds and water vapour will be conducted for mid and low latitudes from the high-altitude equatorial orbit during different seasons with a time resolution of 1 hour

- MIRS contribution: To determine the distribution of the amount of water vapour with :

- spatial resolution :10 km
- absolute spectral radiometric accuracy of 10%
- a relative spectral radiometric accuracy of 1%

 \rightarrow These observations will be made over several successive days in different seasons.

MIRS objectives – Mars atmosphere

(water index)

observation s for middle atmosphere

Possible signatures of organics in Mars's satellites spectra in general

Wavelength (µm)	Assignment
1.21	2 nd overtone of CH ₃ asymmetric stretch
1.39-1.41	1 st overtone of OH stretch
1.69-1.76	1^{st} overtones and comb. of CH ₂ and CH ₃ stretching modes
2.15-2.17	combination of aromatic C-H stretch and C=C stretch
2.27	combinations of CH ₂ asymmetric stretch and symmetric bend
2.31	combinations of CH₃ asymmetric stretch and symmetric bend
2.35	combinations of CH₃ asymmetric stretch and symmetric bend
2.46	CH ₂
2.94-3.12	N-H and NH ₂ group (stretch)
3.27-3.29	aromatic CH stretch or Fermi resonance
3.38-3.39	aliphatic CH₃ asymmetric stretch
3.41-3.42	aliphatic CH ₂ asymmetric stretch
3.48-3.50	aliphatic CH₃ symmetric stretch
3.50	aliphatic CH ₂ symmetric stretch

Course of my thesis

My specific work

Main performances	value
Dark signal	62 500 e-/s
QE including window transmittance	> 63 %
Window reflectivity	< 4%
Power consumption during cooldown	<12W (~ 5W)
Detector temperature	110K

My specific work

- ALE SALES
- I will work on the detector alone and then on the instrument (with the detector implemented).

Implementation of measures :

- ✓ Radiometric
- ✓ Geometric
- ✓ Spectral
- \rightarrow Installation of a calibration bench according MIRS requirements

To analyze/ investigate possible locations for sample collection on Phobos

→ Instrumentation + Planetology

- To Provide an initial set of specifications at the end of March-early april to establish the first tests (proviosional list according to MIRS requirements)
- To set up the bench for the calibration of the detector alone first (with optics and on the instrument then)
- To start the tests
- Work on Phobos's spectrum

Finally : - Intimate knowledge of the instrument

- Competence in spectroscopy IR

THANK YOU !

MIRS PDR