What role will binary neutron star merger afterglows play in
multimessenger cosmology?
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A tension in the
Hubble constant...

CMB vs. SNIa:
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BNS are a new and

independent probe of
Universe:

Multimessenger cosmology
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Standard-siren measurements of H,

H,: need D and z
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Some degeneracy in Dand cos t in

the GW data
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“GW-only” method: measure z from the GW
waveform using the NS tidal effects (assumes
you know the EoS, Messenger+2012, Del
Pozzo+2017)

“Dark siren” method: weigh in the z of all the
galaxies compatible with the GW skymap
(assumes you have complete galaxy catalogs,
Fishbach+2019, Gray+2020)

“Basic multi-messenger” method: identify the
EM counterpart to the merger, and use the z of
the host-galaxy (assumes you can find the
kilonova counterpart, Nissanke+2013, etc.)

Bops [degree]

“Enhanced multi-messenger” method: use
additional cos t information to make a better H,
measurement




How the merger afterglow can contribute to the
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=> Using afterglow light-curve + imagery
makes 3-fold improvement in H!

Imagery (VLBI):

53.39"

displacement:
~3 mas in 155

days 53.40"
(Mooley+2017)

Question: In upcoming observing runs, will
merger afterglows help to measure H, faster?




Competition between: Method

* Rareness of
counterpart

* Precision in
measuring angle

3 levels of inclination angle information:

e Level :GW (= D, i)+ KN (= 2)

* Level 2: GW (= D, i) + KN (= z) + afterglow light-curve (= i)
* Level 3:GW (= D, i) + KN (= z) + afterglow light-curve (= i)
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+ afterglow imagery (= i)

For every signal (GW, KN, afterglow): emission model, detection model,
source population model, angle-measurement model

_ Level 1 Level 2 Level 3

wn

@)

o

=

T

-

V4

a

D- | | | k | | JL |

50 Hq 100 50 Hy 100 50 Hy 100 5



Results |: Expected MM population |
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 Level 2 & 3 events are very rare! And GW170817 was lucky...
* Beware that Level 2 & 3 events are closer and have a better GW SNR
=> their angle information is not the only source of improvement on H,




Results II: Bulk comparison of EM information levels
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AH()/HO ~ @/\/ N => If all events had Level 3 EM information,

Hubble tension resolved ~3 times faster

=> O: effective single-event H, estimation
standard deviation
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Results IIl: Assuming realistic rates of EM counterparts
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=> Statistically, afterglow counterparts are too rare
(or their precision on i is too low) to measure H, faster than

the basic multi-messenger method.
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Caveats and limitations

The hypotheses of our study are optimistic:

Electromagnetic detection criterion based only on flux level. Actual follow-up
is much harder than that: GW skymap coverage, source identification, contrast
with host galaxy, etc. (cf. O3)

We considered afterglow angle information always has GW170817-quality.
But GW170817 had an exceptionally well sampled afterglow light-curve.
Quality should decrease with, e.g., source distance

Overestimate magnitude of VLBI signal: the Level 3 fractions should actually
be lower

We consider no bias in electromagnetic measurement of inclination angle
Our BNS mass function underestimates the GW horizon: expect even more
events without electromagnetic counterparts
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Conclusions

. Prospects for afterglow-enhanced standard-siren measurements of H, are bad
. This conclusion is deduced from an optimistic study
. Results should not be misunderstood: if an image of the merger remnant is

acquired, use it! But, statistically, such data will not help in the long run

. Our conclusion stems from the fact that, as of O3, multimessenger detections are

completely dominated (i.e., limited by) the electromagnetic domain. This will be
worse for O4 and beyond.

. To be competitive, afterglow models should provide degree-level information on

the inclination angle with a typical light-curve (we aren’t there yet...)

Better prospects for kilonovae signals: a ten-degree systematic precision would
suffice for them to accelerate Hy measurement, in reach of better modelling and
kilonovae calibration, once a larger sample is collected

. Electromagnetic sector should not drive multimessenger cosmology: fear of

pollution by uncontrolled selection effects or biases (e.g. Chen 2020) dismissed

. Number of events to solve Hubble tension: still 20-50 (~ten years of O3-like run)



