

### Beyond PLANCK

# BeyondPlanck: Optimal end-to-end Bayesian analysis of Planck LFI

Hans Kristian Eriksen University of Oslo

March 15th, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

# Cosmology at a glance

- How can we mathematically describe the properties of space?
- How many stars and galaxies are there?

- Is there matter we cannot see?
- Could the evolution of the universe be dominated by dark forces?



# Einstein's theory of General Relativity

In 1916 Einstein published a new theory of gravity (GR), correcting Newton's theory from 1687

GR summarized in one equation:

European Commission





GR summarized in one sentence:

Matter tells space how to curve, and space tells matter how to move





# "The greatest blunder of my life"

 The dynamics of the universe is dominated by gravity

European Commission

- GR is therefore our best theory to describe the universe
   Published in 1916
- "Problem": GR does not allow static solutions!

The universe must either expand or contract

Einstein was convinced that the universe was unchanging, and «corrected» his theory by adding a term

1925: Edwin Hubble publishes measurements of galaxy velocities as a function of distance – and finds that the universe expands!!



## Creation in a hot Big Bang?

George Gamow (1948) – "The origins of elements"

European Commission

- If the universe expands today, it must have been smaller earlier
- When you compress a gas, the temperature increases
- Very early the temperature must have been very high; only photons and free elementary particles could exist
- Predictions from Gamow's theory:

There must be about 75% hydrogen and 25% helium in the universe The universe should be filled by electromagnetic radiation with a temperature of ~5°K This radiation should be isotropic, ie., equally intense in all directions The intensity should follow a blackbody (Planck) spectrum



# Radiation from the Big Bang



- The universe started as a hot gas of electrons, protons and photons
  - Frequency collisions led to thermodynamic equilibrium Photons could only move a few meters before hitting an electron
- This gas expanded rapidly, and cooled
- When the temperature dropped below 3000°K, electrons and protons combined into neutral hydrogen
- Without free electrons, photons could move freely throughout the universe!



# The significance of the CMB

Two important properties:

European Commission

Frequency dependency

Photons and electrons in thermodynamic equilibrium generates a Planck spectrum

### Spatial temperature variations

Small temperature variations corresponds to small density variations

Regions with high density 380,000 years after the Big Bang were the seeds for later galaxy formation

A CMB map represents a map of the matter in the universe shortly after the Big Bang!









European Commission

> COBE-DMR 1989-1993 NASA funded















European Commission

### Planck 2009-2013 ESA funded





# From COBE to Planck and beyond

LiteBIRD 2028-2032? JAXA-led





# **COBE vs WMAP vs Planck**

COBE

European Commission

6000

5000

4000

1000

0

 $C_{l} \frac{l(l+1)/2\pi}{1000} (\mu K^{2})$ 



**WMAP** 





**Planck** 







### Planck 2018 frequency maps





### Planck 2018 CMB temperature map



### **CMB power spectra and cosmological parameters**

European Commission



| Parameter                                        | Plik best fit |  |  |
|--------------------------------------------------|---------------|--|--|
| $\Omega_{ m b}h^2$                               | 0.022383      |  |  |
| $\Omega_{ m c}h^2$                               | 0.12011       |  |  |
| $100\theta_{MC}$                                 | 1.040909      |  |  |
| τ                                                | 0.0543        |  |  |
| $\ln(10^{10}A_{\rm s})$                          | 3.0448        |  |  |
| $n_{\rm s}$                                      | 0.96605       |  |  |
| $\Omega_{ m m}h^2$                               | 0.14314       |  |  |
| $H_0 [\text{ km s}^{-1} \text{Mpc}^{-1}] \dots$  | 67.32         |  |  |
| $\Omega_{\mathrm{m}}$                            | 0.3158        |  |  |
| Age [Gyr]                                        | 13.7971       |  |  |
| $\sigma_8$                                       | 0.8120        |  |  |
| $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ | 0.8331        |  |  |
| Z <sub>re</sub>                                  | 7.68          |  |  |
| $100\theta_*$                                    | 1.041085      |  |  |
| $r_{\rm drag}$ [Mpc]                             | 147.049       |  |  |

Planck (2018), A&A, 641, A5



### What about Planck - WMAP?



![](_page_16_Picture_0.jpeg)

![](_page_16_Figure_1.jpeg)

Planck (2018), A&A, 641, A2

### Known poorly measured modes in Planck and WMAP

![](_page_17_Figure_2.jpeg)

Can we address the outstanding issues seen in Planck LFI by:

- 1. speeding up the iteration process, and perform hundreds of component separation + calibration iterations, not just four?
- 2. break internal Planck-specific degeneracies using external data, in particular WMAP?

The name BeyondPlanck was chosen to

- recognize that this work builds on, and is a natural continuation of, the official Planck analysis effort
- emphasize that this involves not only Planck, but also other data sets

![](_page_18_Picture_7.jpeg)

### Why do we care?

20

#### Gravitational waves from black holes

European Commission

![](_page_19_Picture_2.jpeg)

#### Gravitational waves from the Big Bang

![](_page_19_Picture_4.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

European Commission

The sky is more than four orders of magnitude brighter than the signal!  $\bigcup$ 

Need extremely accurate component separation and control of instrumental systematic effects!

![](_page_22_Picture_4.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_1.jpeg)

European Commission

![](_page_26_Figure_2.jpeg)

27

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

### **Classic CMB analysis**

![](_page_29_Figure_2.jpeg)

### CMB's "chicken and egg" problem

### Need to know the instrument to measure the sky...

![](_page_30_Figure_2.jpeg)

European Commission

![](_page_30_Figure_3.jpeg)

### ... but also need to know the sky in order to calibrate the instrument!

![](_page_30_Picture_5.jpeg)

![](_page_30_Picture_6.jpeg)

Sky

### **End-to-end iterative analysis**

![](_page_31_Figure_2.jpeg)

Main goals of the BeyondPlanck project:

- Implement an end-to-end analysis framework for current and future CMB experiments using Planck experience
- Demonstrate this framework with Planck LFI data
- Make software and results publicly available under an OpenSource license

![](_page_32_Picture_5.jpeg)

### The BeyondPlanck pipeline in one slide

1. Write down an explicit parametric model for the observed data:

$$d_{j,t} = g_{j,t} \mathsf{P}_{tp,j} \left[ \mathsf{B}_{pp',j}^{\text{symm}} \sum_{c} \mathsf{M}_{cj}(\beta_{p'}, \Delta_{\text{bp}}^{j}) a_{p'}^{c} + \mathsf{B}_{j,t}^{\text{asymm}} \left( \boldsymbol{s}_{j}^{\text{orb}} + \boldsymbol{s}_{t}^{\text{fsl}} \right) \right] + n_{j,t}^{\text{corr}} + n_{j,t}^{\text{w}}.$$

Let  $\omega$  = {all free parameters}

European Commission

2. Derive the joint posterior distribution with Bayes' theorem:

$$P(\omega \mid \boldsymbol{d}) = \frac{P(\boldsymbol{d} \mid \omega)P(\omega)}{P(\boldsymbol{d})} \propto \mathcal{L}(\omega)P(\omega).$$

3. Map out  $P(\omega \mid d)$  with standard Markov Chain Monte Carlo (MCMC) methods

![](_page_33_Picture_7.jpeg)

The BeyondPlanck data model

![](_page_34_Figure_1.jpeg)

### The posterior distribution

#### How to sample from *big* distributions?

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

### **The BeyondPlanck Gibbs sampler**

### What we want to do:

European Commission

![](_page_37_Figure_2.jpeg)

### How we actually do it:

$$g \leftarrow P(g \mid d, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$n_{corr} \leftarrow P(n_{corr} \mid d, g, \qquad \xi_n, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\xi_n \leftarrow P(\xi_n \mid d, g, n_{corr}, \Delta_{bp}, a, \beta, C_{\ell})$$

$$\Delta_{bp} \leftarrow P(\Delta_{bp} \mid d, g, n_{corr}, \xi_n, \qquad a, \beta, C_{\ell})$$

$$\beta \leftarrow P(\beta \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad C_{\ell})$$

$$a \leftarrow P(a \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, \qquad \beta, C_{\ell})$$

$$C_{\ell} \leftarrow P(C_{\ell} \mid d, g, n_{corr}, \xi_n, \Delta_{bp}, a, \beta \qquad )$$

![](_page_37_Picture_5.jpeg)

### Main product: Ensemble of full sample sets

Instrument

European Commission

![](_page_38_Figure_2.jpeg)

Gibbs iteration

![](_page_38_Figure_3.jpeg)

![](_page_38_Figure_4.jpeg)

![](_page_38_Figure_5.jpeg)

Synch Stokes Q

![](_page_38_Figure_7.jpeg)

![](_page_38_Figure_8.jpeg)

![](_page_38_Picture_9.jpeg)

39

### Frequency maps: 30 GHz Stokes Q

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

### **Frequency maps: Posterior mean**

![](_page_40_Figure_2.jpeg)

### Frequency maps: Difference between two samples

European Commission

![](_page_41_Figure_2.jpeg)

Suur-Uski et al. (2020)

### Frequency maps: 30 GHz minus WMAP K-band

Beyond

![](_page_42_Figure_2.jpeg)

### Astrophysical foregrounds: Temperature sky

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

### Astrophysical foregrounds: Polarized synchrotron emission

![](_page_44_Figure_2.jpeg)

### **CMB temperature sample**

![](_page_45_Figure_1.jpeg)

### CMB: High-I TT spectrum

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

### CMB: Low-I polarization likelihood, τ and r

![](_page_47_Figure_1.jpeg)

Paradiso et al. (2020)

European Commission

Beyond

### Uncertainties on the optical depth of reionization

WN TOD + WN 40 FG + WN TOD + FG + WN 35 30 25  $P(\tau)$ 20 15 10 5 0 0.14 0.06 0.02 0.04 0.08 0.10 0.12 τ

Paradiso et al. (2020)

![](_page_49_Figure_0.jpeg)

- Correlated noise map at 44 GHz shows strong stripes in Southern hemisphere
- Origin not yet understood, but being actively investigated
- Seems associated with poor gain model for some Planck scanning rings
  - Sub-optimal processing mask?
  - Undetected gain jumps?

![](_page_49_Picture_6.jpeg)

### 1/f model at 70 GHz fits well

Correlated noise parameters for 70GHz 23M radiometer

![](_page_50_Figure_2.jpeg)

### Outstanding issues 2: 1/f model at 30 and 44 GHz

Correlated noise parameters for 44GHz 25M radiometer

![](_page_51_Figure_2.jpeg)

### Outstanding issues 2: 1/f model at 30 and 44 GHz

Ihle et al. (2020)

![](_page_52_Figure_2.jpeg)

- Correlated noise is fitted using a standard 1/f model:  $P(f) = \sigma_0^2 \left| 1 + \left( \frac{f}{f_{\text{knee}}} \right)^{\frac{1}{2}} \right|$
- Not a statistically sufficient model for 30 and 44 GHz channels

- Significant and time-variable excess between 0.1 and 5 Hz, corresponding to angular scales beween 1 and 60 degrees on the sky
  - Appears non-thermal in origin. Electrical issue? Investigation on-going

![](_page_52_Picture_7.jpeg)

#### **Computational resource requirements**

European Commission

| Ітем                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 (                                  | GHz   | 44 GHz  | 70 GHz   | Sum      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|---------|----------|----------|--|
| Data volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |         |          |          |  |
| Uncompressed data volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 761                                   | GB    | 1633 GB | 5522 GB  | 7915 GB  |  |
| Compressed data volume/RAM requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 <del>6</del>                        | GB    | 178 GB  | 597 GB   | 861 GB   |  |
| Processing time (cost per run)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |       |         |          |          |  |
| TOD initialization/IO time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176                                   | 5 sec | 288 sec | 753 sec  | 1217 sec |  |
| Other initialization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |       |         |          |          |  |
| Total initializa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |       |         |          | 1880 sec |  |
| Gibbs sampling si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       |         |          |          |  |
| Data decompre 23 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 3 hours/sample                      |       |         |          |          |  |
| TOD projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210 110 41 0/ 0411 1910               |       |         |          |          |  |
| Sidelobe evaluation of the second sec | On                                    |       |         |          | 480 sec  |  |
| Orbital dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 011                                   |       |         |          | 449 sec  |  |
| Gain sampling 72 ooro poo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sampling 72 core pode with 1 5 TP DAM |       |         |          |          |  |
| Correlated nois 72-COLE HOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72-COLE HOUE WITH 1.5 TO RAIM         |       |         |          |          |  |
| TOD binning (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |       |         |          | 498 sec  |  |
| Loss due to po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |       |         |          | 502 sec  |  |
| Sum of other 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |       |         |          | 306 sec  |  |
| TOD processing cost per sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                    | 0.500 | 1071500 | 1000 500 | 6396 sec |  |
| Amplitude sampling, $P(a \mid d, \omega \setminus a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |         |          | 527 sec  |  |
| Spectral index sampling, $P(\beta \mid d, \omega \setminus \beta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |       |         |          |          |  |
| Other steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |       |         |          | 149 sec  |  |
| Total cost per sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |       |         |          | 8168 sec |  |

- Six independent Gibbs chains of each 200 samples were generated on 6 compute nodes
- Total wall production time for main run was **3 weeks**
- Total CPU cost for main run was 220,000 CPU hours
  - For comparison, simulating one single traditional Planck Full Focal Plane 70 GHz realization costs O(10<sup>4</sup>) CPU hours (Planck Collaboration 2016, A&A, 596, A12)

![](_page_53_Picture_7.jpeg)

Galloway et al. (2020)

#### The future: Cosmoglobe

![](_page_54_Figure_1.jpeg)

- BeyondPlanck has successfully implemented an efficient end-to-end analysis framework for global CMB analysis
  - $\circ$  So far, only LFI has been fully integrated
- Now it needs to be populated with complementary datasets:
  - Public: Planck HFI, WMAP, FIRAS, DIRBE...
  - Proprietary: BICEPx, C-BASS, CLASS, COMAP, PASIPHAE, QUIJOTE, QUIET, S-PASS, SPIDER...?
- Obviously a community effort, and will rely on active participation from interested experiments
- This effort will be organized by the Cosmoglobe project, led by Prof. Ingunn Wehus; kick-off in May. More than 15 experiments signed up!

![](_page_54_Picture_9.jpeg)

![](_page_55_Picture_0.jpeg)

### 1. Write down an explicit parametric model for the observed data:

 $d = d(\omega) = signal + noise$ 

European Commission

where  $\omega = \{all free parameters\}$ 

2. Derive the joint posterior distribution with Bayes' theorem:

$$P(\omega \mid \boldsymbol{d}) = \frac{P(\boldsymbol{d} \mid \omega)P(\omega)}{P(\boldsymbol{d})} \propto \mathcal{L}(\omega)P(\omega).$$

3. Map out  $P(\omega \mid d)$  with standard Markov Chain Monte Carlo (MCMC) methods

(It actually works, and it is probably both faster and less error-prone than distributed analysis!)

![](_page_55_Picture_8.jpeg)

### Summary

- BeyondPlanck has successfully implemented a framework for global end-to-end Bayesian CMB analysis, and demonstrated this using Planck LFI
- Important advantages of this framework include:
  - $\circ$  Joint instrument and foreground modelling  $\Rightarrow$  more
  - End-to-end error propagation
  - Physically motivated models
  - Multi-experiment analysis

- Multi-level goodness-of-fit tests
- No intermediate human interaction
- High computational efficiency

- ⇒ more robust results
  - $\Rightarrow$  reliable uncertainties
  - $\Rightarrow$  intuitive interpretation
  - $\Rightarrow$  naturally breaking degeneracies
  - $\Rightarrow$  detailed systematics monitoring
  - $\Rightarrow$  less room for mistakes
  - $\Rightarrow$  can run on inexpensive computers
- Next steps are to generalize and populate this framework with many more datasets, both public and proprietary
  - All interested parties are invited to join Cosmoglobe, working together toward a global model of the Universe in an Open Science-based community!
- The basic philosophy is generally applicable to most experiments: Model both instrument and science jointly, and fit everything at once!

![](_page_56_Picture_20.jpeg)

#### **BeyondPlanck project**

Main webpage: Products:

Papers: Discussion forum:

### Commander

European Commission

> Source code : Documentation:

https://beyondplanck.science https://products.beyondplanck.science https://pla.esac.esa.int (subset; when papers are accepted) https://beyondplanck.science/products/publications https://forums.beyondplanck.science

https://github.com/cosmoglobe/Commander https://docs.beyondplanck.science

### Cosmoglobe

Main webpage:

http://cosmoglobe.uio.no

Planck Legacy Archive (selected BeyondPlanck products coming soon)Link:<a href="https://pla.esac.esa.int">https://pla.esac.esa.int</a>

Beyond PLANCK

### The BeyondPlanck collaboration

#### **EU-funded institutions**

![](_page_58_Picture_2.jpeg)

European Commission

> Kristian Joten Andersen **Ragnhild Aurlien** Ranajoy Banerji Maksym Brilenkov Hans Kristian Eriksen Johannes Røsok Eskilt Marie Kristine Foss Unni Fuskeland Eirik Gjerløw Mathew Galloway Daniel Herman Ata Karakci Håvard Tveit Ihle Metin San **Trygve Leithe Svalheim** Harald Thommesen **Duncan Watts** Ingunn Kathrine Wehus

![](_page_58_Picture_4.jpeg)

Marco Bersanelli Loris Colombo Cristian Franceschet Davide Maino Aniello Mennella Simone Paradiso

![](_page_58_Picture_6.jpeg)

Sara Bertocco Samuele Galeotta Gianmarco Maggio Michele Maris Daniele Tavagnacco Andrea Zacchei

#### Elina Keihänen Anna-Stiina Suur-Uski

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

![](_page_58_Picture_10.jpeg)

Stelios Bollanos Stratos Gerakakis Maria leoronymaki Ilias Ioannou

#### External collaborators

![](_page_58_Picture_13.jpeg)

Brandon Hensley

Jeff Jewell

![](_page_58_Picture_16.jpeg)

Reij

Reijo Keskitalo

![](_page_58_Picture_19.jpeg)

Bruce Partridge

![](_page_58_Picture_21.jpeg)

Martin Reinecke

![](_page_58_Picture_23.jpeg)

### Funding

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776282

![](_page_59_Picture_2.jpeg)

### "BeyondPlanck"

Ο

- COMPET-4 program
  - PI: Hans Kristian Eriksen
- Grant no.: 776282
- Period: Mar 2018 to Nov 2020

Collaborating projects:

- "bits2cosmology"
  - ERC Consolidator Grant
  - PI: Hans Kristian Eriksen
  - Grant no: 772 253
  - Period: April 2018 to March 2023

- "Cosmoglobe"
  - ERC Consolidator Grant
  - PI: Ingunn Wehus
  - Grant no: 819 478
  - Period: June 2019 to May 2024

![](_page_59_Picture_19.jpeg)

#### **Questions?**

European Commission

# Beyond PLANCK

# Commander

![](_page_60_Picture_4.jpeg)

![](_page_60_Picture_5.jpeg)

![](_page_60_Picture_6.jpeg)

![](_page_60_Picture_7.jpeg)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

![](_page_60_Picture_9.jpeg)

![](_page_60_Picture_10.jpeg)

![](_page_60_Picture_11.jpeg)

![](_page_60_Picture_12.jpeg)

![](_page_60_Picture_13.jpeg)

![](_page_60_Picture_14.jpeg)

![](_page_60_Picture_15.jpeg)

Cosmoglobe Beyond

![](_page_60_Picture_17.jpeg)

![](_page_60_Picture_18.jpeg)