Status of "B-physics anomalies"

Christoph Bobeth

CPPM Seminar

January 25, 2021

Outline

- Flavor in the Standard Model
-b Physics

B anomalies:

- Experimental status
- Comments on Standard Model and prospects
- New physics interpretation

Flavor in the

Standard Model
 (of particle physics)

The Standard Model (SM)

We try to test known general principles and to find new ones at microscopic length scales

Spin 0
Higgs

The Standard Model (SM)

We try to test known general principles and to find new ones at microscopic length scales

Spin 1/2		
Leptons		
$v_{e L}$	$v_{\mu L}$	$v_{\tau L}$
e_{L}	μ_{L}	τ_{L}
e_{R} μ_{R} τ_{R} Quarks u_{L} c_{L} t_{L} d_{L} s_{L} b_{L} u_{R} c_{R} t_{R} d_{R} s_{R} b_{R}		

	Spin 0
Higgs	$H=\left(h^{+}, h^{0}\right)$

The Standard Model (SM)

We try to test known general principles and to find new ones at microscopic length scales

$$
Q_{L}=\binom{u_{L}}{d_{L}}, \quad L_{L}=\binom{\nu_{L}}{\ell_{L}}
$$

Relativistic invariance + renormalizability ($\leq \operatorname{dim} 4$)

- Scalar potential:

$$
V(H)=-\mu^{2}\left(H^{\dagger} H\right)+\Lambda\left(H^{\dagger} H\right)^{2}
$$

- Yukawa potential for quarks:

$$
\mathcal{L}_{Y u k} \sim \sum_{i j=1}^{3} \bar{Q}_{L, i}\left(Y_{U, i j} \widetilde{H} u_{R, j}+Y_{D, i j} H d_{R, j}\right)+\ldots
$$

$$
3 \times 3 \text { matrices } Y_{U, D} \text { distinguish generations } \Rightarrow \text { flavor }
$$

$$
\text { Local gauge invariance } \quad \mathrm{SU}(3)_{c} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}
$$

- minimal coupling " $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g A_{\mu}$ "
- 3 gauge couplings: g_{3}, $g_{2}, \quad g_{1}$
- massless gauge bosons

The Standard Model (SM)

We try to test known general principles and to find new ones at microscopic length scales

$$
Q_{L}=\binom{u_{L}}{d_{L}}, \quad L_{L}=\binom{\nu_{L}}{\ell_{L}}
$$

Relativistic invariance + renormalizability ($\leq \operatorname{dim} 4$)

- Scalar potential:

$$
V(H)=-\mu^{2}\left(H^{\dagger} H\right)+\Lambda\left(H^{\dagger} H\right)^{2}
$$

- Yukawa potential for quarks:

$$
\mathcal{L}_{Y u k} \sim \sum_{i j=1}^{3} \bar{Q}_{L, i}\left(Y_{U, i j} \widetilde{H} u_{R, j}+Y_{D, i j} H d_{R, j}\right)+\ldots
$$

$$
3 \times 3 \text { matrices } Y_{U, D} \text { distinguish generations } \Rightarrow \text { flavor }
$$

Local gauge invariance $\quad \mathrm{SU}(3)_{C} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$

- minimal coupling " $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g A_{\mu}$ "
- 3 gauge couplings: g_{3}, g_{2},
- massless gauge bosons

Spontaneous Symmetry Breaking (SSB)

[Englert/Brout \& Higgs \& Guralnik/Hagen/Kibble mechanism]

- residual symmetry with massless photon:

$$
\mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{\mathrm{em}}
$$

- massive gauge bosons:
m_{W}, m_{Z}
- massive Leptons and Quarks: (but $m_{\nu}=0$)

$$
Y_{U} \rightarrow m_{u, c, t}, \quad Y_{D} \rightarrow m_{d, s, b}, \quad Y_{L} \rightarrow \begin{gathered}
m_{e, \mu, \tau} \\
4 / 33 \\
\hline
\end{gathered}
$$

Flavor changes in SM \rightarrow CKM matrix

Mass eigenstates \Rightarrow diagonalization of mass matrix of quarks and gauge bosons

- the only flavor-changing coupling in SM via $W^{ \pm}$gauge bosons

$$
\left.\begin{array}{rl}
U_{i}=\{u, c, t\}: \\
Q_{u} & =+2 / 3 \\
D_{j} & =\{d, s, b\}: \\
Q_{d}=-1 / 3 & \mathcal{L}_{u d W^{ \pm}}
\end{array}\right)
$$

- $V_{\text {CKM }} V_{\text {CKM }}^{\dagger}=\mathbb{1}_{3 \times 3} \quad \Rightarrow \quad$ only 4 real parameters
\rightarrow in principle 18-9 = 9 real dof's but phase transformations of 5 quark fields allow to remove unphysical ones
- CP violation via complex phase in $V_{\text {CKM }}$
\rightarrow requires existence of at least 3 generations
- Quark-Yukawa coupl's $\in \mathbb{C}$ depend on 6 quark masses and 4 CKM parameters

Flavor changes in SM \rightarrow CKM matrix

Mass eigenstates \Rightarrow diagonalization of mass matrix of quarks and gauge bosons

- the only flavor-changing coupling in SM via $W^{ \pm}$gauge bosons

$$
\left.\begin{array}{rl}
U_{i}=\{u, c, t\}: \\
Q_{u} & =+2 / 3 \\
D_{j} & =\{d, s, b\}: \\
Q_{d}=-1 / 3 & \mathcal{L}_{u d W^{ \pm}}
\end{array}\right)
$$

- $V_{\text {CKM }} V_{\text {CKM }}^{\dagger}=\mathbb{1}_{3 \times 3} \quad \Rightarrow \quad$ only 4 real parameters
\rightarrow in principle 18-9 = 9 real dof's but phase transformations of 5 quark fields allow to remove unphysical ones
- CP violation via complex phase in $V_{\text {CKM }}$
[Kobayashi/Maskawa Prog.Theor.Phys. 49 (1973) 652]
\rightarrow requires existence of at least 3 generations
- Quark-Yukawa coupl's $\in \mathbb{C}$ depend on 6 quark masses and 4 CKM parameters

$$
\text { The SM has }\left.2\right|_{\mu, \Lambda}+\left.3\right|_{g_{1}, g_{2}, g_{3}}+\left.9\right|_{m_{q}, m_{\ell}}+\left.4\right|_{\text {CKM }}=18 \text { parameters }
$$

omitting massive neutrino's and θ_{QCD}
These are fundamental parameters of nature \Rightarrow need to determine them as precisely as possible

b Physics

The b quark

- $b=$ bottom or $b=$ beauty ? (PDG uses "bottom")
- introduced by Kobayashi/Maskawa 1973 to explain CP violation \Rightarrow discovered 1977
- heaviest quark of light quarks

$$
m_{b} \sim 4.2 \mathrm{GeV} \ll m_{W} \sim 80 \mathrm{GeV}
$$

- heaviest quark that forms hadronic bound states
- large mass opens more decay channels than for lighter quarks c, s
- hierarchy with QCD binding scale

$$
\Lambda_{\mathrm{QCD}} \lesssim 0.5 \mathrm{GeV} \ll m_{b}
$$

$\Rightarrow b$ quark acts as static color source in background of "brown muck" [Nathan Isgur]
\Rightarrow puts theory predictions for hadronic matrix elements on firmer grounds

The b quark

- $b=$ bottom or $b=$ beauty ? (PDG uses "bottom")
- introduced by Kobayashi/Maskawa 1973 to explain CP violation \Rightarrow discovered 1977
- heaviest quark of light quarks

$$
m_{b} \sim 4.2 \mathrm{GeV} \ll m_{W} \sim 80 \mathrm{GeV}
$$

- heaviest quark that forms hadronic bound states
- large mass opens more decay channels than for lighter quarks c, s
- hierarchy with QCD binding scale

$$
\Lambda_{\mathrm{QCD}} \lesssim 0.5 \mathrm{GeV} \ll m_{b}
$$

$\Rightarrow b$ quark acts as static color source in background of "brown muck" [Nathan Isgur] \Rightarrow puts theory predictions for hadronic matrix elements on firmer grounds

b Mesons:

Particle Data Group (PDG) convention:

$$
\bar{B}_{q}=(\bar{q} b) \quad \text { and } \quad B_{q}=(q \bar{b})+\text { excited states }
$$

$$
\begin{array}{llll}
\bar{B}_{u}=B^{-}=(\bar{u} b) & \bar{B}_{d}=\bar{B}^{0}=(\bar{d} b) & \bar{B}_{s}=\bar{B}_{s}=(\bar{s} b) & \bar{B}_{c}=B_{c}^{-}=(\bar{c} b) \\
m_{B_{u}}=5.2793 \mathrm{GeV} & m_{B_{d}}=5.2796 \mathrm{GeV} & m_{B_{s}}=5.3669 \mathrm{GeV} & m_{B_{c}}=6.2749 \mathrm{GeV}
\end{array}
$$

b Baryons:

PDG convention:

$$
\Lambda_{b}^{0}=(u d b) \text { and more exotic } \Xi_{b}^{0}=(u s b), \Xi_{b}^{-}=(d s b), \Omega_{b}^{-}=(s s b) \quad m_{\Lambda_{b}}=5.6196 \mathrm{GeV}
$$

b Experiments: Past \& Future

b Experiments: LHCb and Belle II

LHCb

- at Large Hadron Collider (LHC)

\rightarrow symmetric $p^{+}(6.5 \mathrm{TeV})+p^{+}(6.5 \mathrm{TeV})$
- gluon + aluon $\rightarrow b \bar{b}$

- $10^{12} b \bar{b}$ pairs in Run $1+2$

Belle II

- at KEKB Tsukuba Japan
\rightarrow at $\Upsilon(4 S)=(b \bar{b})$ resonance:

when running at $\Upsilon(5 S)$ also access to B_{s} mesons \rightarrow Belle I
\rightarrow asymmetric $e^{+}(3.1 \mathrm{GeV})+e^{-}(9 \mathrm{GeV})$
- $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$

- $\sim 5 \times 10^{10} B \bar{B}$ pairs at Belle II (2019-2025)
$\sim 4.69 \times 10^{8} B \bar{B}$ pairs at $\operatorname{BaBar}(2000-2008)$
$\sim 7.71 \times 10^{8} B \bar{B}$ pairs at Belle I (2000-2010)

FCCC = Flavor-changing charged-current

Simplest decay $B^{-} \rightarrow \ell \bar{\nu}_{\ell}=$ "Tree decay"
$B^{-}=(\bar{u} b)$ meson: $Q_{b} \neq Q_{u} \Leftarrow$ charged current

Fermi constant in SM @ tree-level

$$
G_{F}=\frac{\sqrt{2} g_{2}^{2}}{8 m_{W}^{2}}=\frac{1}{\sqrt{2} v^{2}}
$$

$\leftarrow \mathrm{SM}=$ full theory
EFT $=$ effective theory \rightarrow

Matching

$i \mathcal{A}_{\mathrm{SM}}=-\frac{g_{2}^{2}}{2} V_{u b} \frac{1}{q^{2}-m_{W}^{2}}\left[\bar{u} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right] \underset{q^{2} \ll m_{W}^{2}}{\approx \underbrace{\frac{4 \mathcal{G}_{F}}{\sqrt{2}} V_{u b}\left[\bar{u} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right]}_{\text {can be obtained from EFT }}}+\mathcal{O}\left(\frac{m_{b}^{2}}{m_{W}^{2}}\right)$

FCCC = Flavor-changing charged-current

Simplest decay $B^{-} \rightarrow \ell \bar{\nu}_{\ell}=$ "Tree decay" $\quad B^{-}=(\bar{u} b)$ meson: $Q_{b} \neq Q_{u} \Leftarrow$ charged current

FCCC = Flavor-changing charged-current

Simplest decay $B^{-} \rightarrow \ell \bar{\nu}_{\ell}=$ "Tree decay" $\quad B^{-}=(\bar{u} b)$ meson: $Q_{b} \neq Q_{u} \Leftarrow$ charged current

Fermi constant in SM @ tree-level

$$
G_{F}=\frac{\sqrt{2} g_{2}^{2}}{8 m_{W}^{2}}=\frac{1}{\sqrt{2} v^{2}}
$$

$\leftarrow \mathrm{SM}=$ full theory

$$
\mathrm{EFT}=\text { effective theory } \rightarrow
$$

Matching

$$
i \mathcal{A}_{\mathrm{SM}}=-\frac{g_{2}^{2}}{2} V_{u b} \frac{1}{q^{2}-m_{W}^{2}}\left[\bar{u} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right] \underbrace{q^{2} \ll m_{W}^{2}} \underbrace{\frac{4 \mathcal{G}_{F}}{\sqrt{2}} V_{u b}\left[\bar{u} \gamma^{\mu} P_{L} b\right]\left[\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right]}+\mathcal{O}\left(\frac{m_{b}^{2}}{m_{W}^{2}}\right)
$$

can be obtained from EFT

$$
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}-C_{V_{L}} Q_{V_{L}}>\left.C_{V_{L}}\right|_{\mathrm{SM}}=\frac{4 \mathcal{G}_{F}}{\sqrt{2}} V_{u b} \quad>Q_{V_{L}} \equiv\left[\bar{u} \gamma_{\mu} P_{L} b\right]\left[\bar{\ell} \gamma^{\mu} P_{L} \nu_{\ell}\right]
$$

EFT $=$ Wilson coefficient \times operator
Need hadronic matrix elements to calculate observables

$$
i \mathcal{A}_{\mathrm{EFT}} \propto\left\langle\ell \bar{\nu}_{\ell}\right| Q_{V_{L}}\left|B^{-}\right\rangle \propto\left\langle\ell \bar{\nu}_{\ell}\right| \bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}|0\rangle \times\langle 0| \bar{q} \gamma^{\mu} P_{L} b\left|B^{-}\left(p_{B}\right)\right\rangle \propto f_{B^{-}} m_{\ell}\left[\bar{u}\left(p_{\ell}\right) \gamma_{5} v\left(p_{\nu}\right)\right]
$$

$$
\Rightarrow \text { hadronic effects in } \boldsymbol{B}^{-} \text {decay constant } f_{B^{-}}=(189.4 \pm 1.4) \mathrm{MeV} \text { from Lattice QCD }
$$

$$
\operatorname{Br}\left[B^{-} \rightarrow \ell \bar{\nu}_{\ell}\right] \propto \frac{1}{2 m_{B^{-}}} \& d \Pi_{2}\left|\mathcal{A}_{\mathrm{EFT}}\right|^{2} \propto \tau_{B^{-}} m_{\ell}^{2}{\left(f_{B^{-}}\right)^{2} \quad\left|C_{V_{L}}\right|^{2}}^{2}
$$

FCNC = Flavor-changing neutral-current

Simplest decay $B^{0} \rightarrow \ell \bar{\ell}=$ "Loop decay"
$B^{0}=(\bar{d} b)$ meson: $Q_{b}=Q_{d} \Leftarrow$ neutral current

Matching
\Rightarrow

$$
\mathcal{L}_{\mathrm{EFT}} \propto C_{10} Q_{10}+\ldots \quad C_{10 \mid \mathrm{SM}}=\frac{4 \mathcal{G}_{F}}{\sqrt{2}} \frac{\alpha_{e}}{4 \pi} \sum_{q} V_{q b} V_{q d}^{*} F\left(m_{q}\right) \quad Q_{10} \equiv\left[\bar{d} \gamma_{\mu} P_{L} b\right]\left[\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right]
$$

FCNC = Flavor-changing neutral-current

Simplest decay $B^{0} \rightarrow \ell \bar{\ell}=$ "Loop decay" $\quad B^{0}=(\bar{d} b)$ meson: $Q_{b}=Q_{d} \Leftarrow$ neutral current

Matching
\Rightarrow

$\mathcal{L}_{\mathrm{EFT}} \propto C_{10} Q_{10}+\ldots \quad C_{10} \left\lvert\, \mathrm{SM}=\frac{4 \mathcal{G}_{F}}{\sqrt{2}} \frac{\alpha_{e}}{4 \pi} \sum_{q} V_{q b} V_{q d}^{*} F\left(m_{q}\right) \quad Q_{10} \equiv\left[\bar{d} \gamma_{\mu} P_{L} b\right]\left[\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right]\right.$

- $F\left(m_{q}\right)$ function of quark masses m_{q} for $q=u, c, t$
- for $m_{u}=m_{c}=m_{t}=M$ have GIM mechanism

$$
\sum_{q} V_{q b} V_{q d}^{*} F\left(m_{q}\right)=F(M) \Sigma_{q} V_{q b} V_{q d}^{*}=0 \quad \text { by unitarity of CKM } \Rightarrow \text { no FCNC's in this limit }
$$

- GIM mechanism is broken by huge top-quark mass $m_{t} \sim 170 \mathrm{GeV} \gg m_{u, c}$
\Rightarrow Can investigate FCNC decays of $B_{d, s}$ mesons $\quad\left(K_{L} \rightarrow \mu \bar{\mu}\right.$ was used to estimate m_{c} in early 70 's)

$$
\operatorname{Br}\left[B^{0} \rightarrow \ell \bar{\ell}\right] \propto \frac{1}{2 m_{B^{0}}} \& d \Pi_{2}\left|\mathcal{A}_{\mathrm{EFT}}\right|^{2} \propto \tau_{B^{0}} m_{\ell}^{2}\left(f_{B^{0}}\right)^{2}\left|C_{10}\right|^{2}
$$

Semileptonic FCCC decays

Semileptonic decays $\bar{B} \rightarrow M \ell \bar{\nu}_{\ell}=$ "Tree decay" \Rightarrow same EFT as for $B^{-} \rightarrow \ell \bar{\nu}_{\ell}$

Semileptonic FCCC decays

Semileptonic decays $\bar{B} \rightarrow M \ell \bar{\nu}_{\ell}=$ "Tree decay" \Rightarrow same EFT as for $B^{-} \rightarrow \ell \bar{\nu}_{\ell}$

$M=P$ seudoscalar form factors $F_{i}\left(q^{2}\right)=$ scalar functions

$$
\langle M(k)| \bar{q} \gamma_{\mu} b|B(p)\rangle=F_{+}(p+k)_{\mu}+\left[F_{0}-F_{+}\right] \frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q_{\mu}, \quad\langle M| \bar{q} \gamma_{\mu} \gamma_{5} b|B\rangle=0
$$

q^{2}-differential branching ratio

$$
\Rightarrow \text { only } F_{+} \text {relevant if } m_{\ell} \ll q^{2}(\ell=e, \mu), F_{0} \text { important for } \ell=\tau
$$

$$
\frac{d B r\left[\bar{B} \rightarrow P \ell \bar{\nu}_{\ell}\right]}{d q^{2}} \propto \tau_{B}\left|C_{V_{V}}\right|^{2}\left\{m_{B}^{2}|\vec{p}|^{2}\left(1-\frac{m_{\ell}^{2}}{2 q^{2}}\right)^{2}\left(F_{+}\right)^{2}+\frac{3 m_{\ell}^{2}}{8 q^{2}}\left(m_{B}^{2}+m_{P}^{2}\right)^{2}\left(F_{0}\right)^{2}\right\}
$$

\Rightarrow Lepton-flavor universal (LFU) Wilson coefficient $C_{V_{L}} \sim \mathcal{G}_{F} V_{u b}$

Lattice QCD

Most important nonperturbative method to calculate hadronic matrix elements
\Rightarrow evaluate Feynman path-integral numerically with some modifications:

- 1) discretize space-time continuum
- 2) finite volume
- 3) use Euclidean correlators
- 4) (not always) use unphysical quark content
!!! depending on "quantity", result can be related to the quantity in the continuum (real world)

Lattice QCD

Most important nonperturbative method to calculate hadronic matrix elements
\Rightarrow evaluate Feynman path-integral numerically with some modifications:

- 1) discretize space-time continuum
- 2) finite volume
- 3) use Euclidean correlators
- 4) (not always) use unphysical quark content
!!! depending on "quantity", result can be related to the quantity in the continuum (real world)
- Decay constants $\quad\langle 0| \ldots|\bar{B}\rangle \propto f_{B}$ Very good control on decay constants $f_{B}(<1 \%$ rel. error)
-B $\rightarrow P$ form factors $\quad\langle P| \ldots|\bar{B}\rangle \propto F_{i}\left(q^{2}\right) \quad(P=\pi, K, D)$ Good control on $B \rightarrow P$ (pseudo-scalar) form factors (< 10% rel. error), but only for $q^{2} \rightarrow q_{\text {max }}^{2}$
- $B \rightarrow V$ form factors $\quad\langle V| \ldots|\bar{B}\rangle \propto F_{i}\left(q^{2}\right) \quad\left(V=K^{*}, D^{*}\right)$
!!! V not stable \Rightarrow experimentally detected by subsequent decay $V \rightarrow P_{1} P_{2}$
\rightarrow Currently assume stable V in Lattice QCD
\rightarrow in future might calculate $\left\langle P_{1} P_{2}\right| \ldots|\bar{B}\rangle \propto F_{i}\left(q^{2}, k^{2}\right)$
- Baryon form factors

$$
\left\langle\Lambda_{q}\right| \ldots\left|\Lambda_{b}\right\rangle \propto F_{i}\left(q^{2}\right) \quad\left(\Lambda_{q}=p^{+}, \Lambda_{c}\right)
$$

So far "CKM-picture" of SM works

\Rightarrow fit of CKM-Parameters . . .
[experimental input from CKMfitter homepage]

CKM matrix in terms of

4 Wolfenstein parameters

$$
\begin{array}{llll}
\lambda, & \boldsymbol{A}, & \bar{\rho}, & \bar{\eta}
\end{array}
$$

\Rightarrow nowadays a sophisticated fit:
"combine and overconstrain"
!!! numerous b-physics measurements
$\lambda \approx 0.225$
Cabibbo angle

$\left\|V_{u d}\right\|$ (nuclei)	$0.97425 \pm 0 \pm 0.00022$	
$\left\|V_{u s}\right\| f_{+}^{K \rightarrow \pi}(0)$	0.2163 ± 0.0005	
$\left\|V_{c d}\right\|(\nu N)$	0.230 ± 0.011	
$\left\|V_{c s}\right\|(W \rightarrow c \bar{s})$	$0.94{ }_{-0.26}^{+0.32} \pm 0.13$	
\| $\left\|V_{u b}\right\|$ (semileptonic)	$(4.01 \pm 0.08 \pm 0.22) \times 10^{-3}$	
$\left\|V_{c b}\right\|$ (semileptonic)	$(41.00 \pm 0.33 \pm 0.74) \times 10^{-3}$	
\| $\mathcal{B}\left(\Lambda_{p} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)_{q^{2}>15} / \mathcal{B}\left(\Lambda_{p} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)_{q^{2}>7}$	$(1.00 \pm 0.09) \times 10^{-2}$	
\\| $\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)$	$(1.08 \pm 0.21) \times 10^{-4}$	
$\mathcal{B}\left(D_{s}^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$	$(5.57 \pm 0.24) \times 10^{-3}$	
$\mathcal{B}\left(D_{s}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)$	$(5.55 \pm 0.24) \times 10^{-2}$	
$\mathcal{B}\left(D^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$	$(3.74 \pm 0.17) \times 10^{-4}$	
$\mathcal{B}\left(K^{-} \rightarrow e^{-\bar{\nu}_{e}}\right)$	$(1.581 \pm 0.008) \times 10^{-5}$	
$\mathcal{B}\left(K^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$	0.6355 ± 0.0011	
$\mathcal{B}\left(\tau^{-} \rightarrow K^{-} \bar{\nu}_{\tau}\right)$	$(0.6955 \pm 0.0096) \times 10^{-2}$	
$\mathcal{B}\left(K^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right) / \mathcal{B}\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$	1.3365 ± 0.0032	
$\mathcal{B}\left(\tau^{-} \rightarrow K^{-} \bar{\nu}_{\tau}\right) / \mathcal{B}\left(\tau^{-} \rightarrow \pi^{-} \bar{\nu}_{\tau}\right)$	$(6.431 \pm 0.094) \times 10^{-2}$	
$\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$	$\left(2.88_{-0.6}^{+0.7}\right) \times 10^{-9}$	
$\left\|V_{c d}\right\| f_{ \pm}^{D \rightarrow \pi}(0)$	0.148 ± 0.004	
$\left\|V_{c s}\right\| f_{+}^{D \rightarrow K}(0)$	0.712 ± 0.007	
$\left\|\varepsilon_{K}\right\|$	$(2.228 \pm 0.011) \times 10^{-3}$	
Δm_{d}	$(0.510 \pm 0.003) \mathrm{ps}^{-1}$	
Δm_{s}	$(17.757 \pm 0.021) \mathrm{ps}^{-1}$	
$\sin (2 \beta)_{[c \bar{c}]}$	0.691 ± 0.017	
$\left(\phi_{s}\right)_{[b \rightarrow c s s]}$	-0.015 ± 0.035	
$S_{\pi \pi}^{+-}, C_{\pi \pi}^{+-}, C_{\pi \pi}^{00}, \mathcal{B}_{\pi \pi}$ all charges	Inputs to isospin analysis	
$S_{\rho \rho, L}^{+-}, C_{\rho \rho, L}^{+-}, S_{\rho \rho}^{00}, C_{\rho \rho}^{00}, \mathcal{B}_{\rho \rho, L}$ all charges	Inputs to isospin analysis	
$B^{\rho, L^{\prime}} \rightarrow(\rho \pi)^{D^{\prime}} \rightarrow 3 \pi$	Time-dependent Dalitz analysis	
$B^{-} \rightarrow D^{(*)} K^{(*)-}$	Inputs to GLW analysis	
$B^{-} \rightarrow D^{(+)} K^{(+)-}$	Inputs to ADS analysis	
$B^{-} \rightarrow D^{(*)} K^{(*)-}$	GGSZ Dalitz analysis	
	14 / 33	

$0.97425 \pm 0 \pm 0.00022$
0.2163 ± 0.0005
0.230 ± 0.011
$0.94_{-0.26}^{+0.32} \pm 0.13$
$(4.01 \pm 0.08 \pm 0.22) \times 10^{-3}$
$(41.00 \pm 0.33 \pm 0.74) \times 10^{-3}$
$(1.00 \pm 0.09) \times 10^{-2}$
$(1.08 \pm 0.21) \times 10^{-4}$
$(5.57 \pm 0.24) \times 10^{-3}$
$(3.55 \pm 0.24) \times 10^{-4}$
$(1.581 \pm 0.008) \times 10^{-5}$ 0.6355 ± 0.0011
$(0.6955 \pm 0.0096) \times 10^{-2}$ 1.3365 ± 0.0032
$(6.431 \pm 0.094) \times 10^{-2}$
$\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9}$
$0.712 \pm$

$$
\begin{gathered}
(2.228 \pm 0.011) \times 10^{-3} \\
(0.510 \pm 0.003) \mathrm{ps}^{-1} \\
(17.757 \pm 0.021) \mathrm{ps}^{-1} \\
0.691 \pm 0.017 \\
-0.015 \pm 0.035
\end{gathered}
$$

Inputs to isospin analysis Inputs to isospin analysis Time-dependent Dalitz analysis

Inputs to GLW analysis Inputs to ADS analysis 14 / 33

So far "CKM-picture" of SM works

```
# fit of CKM-Parameters ... 2003 }\boldsymbol{~}201
```

$$
\text { Unitarity: } V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}+V_{t b} V_{t d}^{*}=0
$$

More on CKM fits http://ckmfitter.in2p3.fr/www/html/ckm_main.html http://www.utfit.org/UTfit/

Beyond the SM

A model that successfully explains phenomena over large scales of energy
\Rightarrow electromagnetism
\Rightarrow atomic physics
\Rightarrow nuclear physics
\Rightarrow radioactivity
\Rightarrow particle physics

Beyond the SM

A model that successfully explains phenomena over large scales of energy
\Rightarrow electromagnetism
\Rightarrow atomic physics
\Rightarrow nuclear physics
\Rightarrow radioactivity
\Rightarrow particle physics

Empirical issues

- Neutrino masses
- Matter-antimatter asymmetry
- Dark matter
- Isotropy and flatness of CMB
- Several tensions in various sectors ($g-2)_{\mu}, B$-anomalies, \ldots

Theoretical issues

- Why $\mathrm{SU}(3)_{c} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$?
- Why three generations?
- Why large hierarchies in flavor sector?
- How to include/quantize gravity?

Beyond the SM

A model that successfully explains phenomena over large scales of energy
\Rightarrow electromagnetism
\Rightarrow atomic physics
\Rightarrow nuclear physics
\Rightarrow radioactivity
\Rightarrow particle physics

Empirical issues

- Neutrino masses
- Matter-antimatter asymmetry
- Dark matter
- Isotropy and flatness of CMB
- Several tensions in various sectors $(g-2)_{\mu}, B$-anomalies, \ldots

Theoretical issues

- Why $\mathrm{SU}(3)_{c} \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$?
- Why three generations?
- Why large hierarchies in flavor sector?
- How to include/quantize gravity?

Hints for new scales based on assumptions on physics beyond SM

- $\mu_{\text {Planck }} \sim 10^{19} \mathrm{GeV}$: Planck scale \Rightarrow effects of quantum gravity not negligible
- $\mu_{\mathrm{GUT}} \sim 10^{16} \mathrm{GeV}$: grand unification of $\mathrm{SU}(3)_{C}, \mathrm{SU}(2)_{L}$ and $\mathrm{U}(1)_{Y}$ into some GUT-group but no real evidence ...

B anomalies: Status

Can test Lepton-Flavor Universality (LFU) of SM in ratios involving different $\ell=e, \mu, \tau$

- SM Wilson coefficients of EFT are independent of lepton flavor = universal
- LF-non-universal effects in observables are from phase-space integration

$$
R^{\ell \ell^{\prime}}(M) \equiv \frac{\int_{q_{a, \ell}^{2}}^{q_{b, \ell}^{2}} d q^{2} \frac{d B r[\bar{B} \rightarrow M+(\ell \bar{\nu}, \ell \bar{\ell})]}{d q^{2}}}{\int_{q_{a, \ell^{\prime}}^{2}}^{q_{b, \ell^{\prime}}^{2}} d q^{2} \frac{d B r\left[\bar{B} \rightarrow M+\left(\ell^{\prime} \bar{\nu}^{\prime}, \ell^{\prime} \bar{\ell}^{\prime}\right)\right]}{d q^{2}}}
$$

- note different phase-space integral
- in SM overall factor $\propto \mathcal{G}_{F}^{2}\left|V_{\text {CKM }}\right|^{2}$ cancels
- strong cancellation of $B \rightarrow M$ form factor uncertainties

"LFU ratios"

Can test Lepton-Flavor Universality (LFU) of SM in ratios involving different $\ell=e, \mu, \tau$

- SM Wilson coefficients of EFT are independent of lepton flavor = universal
- LF-non-universal effects in observables are from phase-space integration

$$
R^{\ell \ell^{\prime}}(M) \equiv \frac{\int_{q_{a, \ell}^{2}}^{q_{b, \ell}^{2}} d q^{2} \frac{d B r[\bar{B} \rightarrow M+(\ell \bar{\nu}, \ell \bar{\ell})]}{d q^{2}}}{\int_{q_{a, \ell^{\prime}}^{2}}^{q_{b, \ell^{\prime}}^{2}} d q^{2} \frac{d B r\left[\bar{B} \rightarrow M+\left(\ell^{\prime} \bar{\nu}^{\prime}, \ell^{\prime} \bar{\ell}^{\prime}\right)\right]}{d q^{2}}}
$$

FCCC $b \rightarrow c \ell \bar{\nu}$

$\ell=\tau$			
$\ell^{\prime}=e+\mu$	$M=D$	\rightarrow	$R^{\tau \ell}(D)$
$M=D^{*}$	\rightarrow	$R^{\tau \ell}\left(D^{*}\right)$	

LHCb measures $\ell^{\prime}=\mu$

- note different phase-space integral
- in SM overall factor $\propto \mathcal{G}_{F}^{2}\left|V_{\text {CKM }}\right|^{2}$ cancels
- strong cancellation of $B \rightarrow M$ form factor uncertainties

$$
\text { FCNC } b \rightarrow s \ell \bar{\ell}
$$

$$
\begin{aligned}
& \ell=\mu \\
& \ell^{\prime}=0
\end{aligned}
$$

$$
\ell^{\prime}=e
$$

$$
\begin{array}{lll}
M=K & \rightarrow R^{\mu e}(K) \\
M=K^{*} & \rightarrow R^{\mu e}\left(K^{*}\right)
\end{array}
$$

First signs of tensions with SM (previous measurements had large errors)

2012	$R^{\tau \ell}\left(D, D^{*}\right)$	$[$ [Babar 1205.5442]	2014	$R^{\mu e}(K)$	$[$ [LHCb 3/fb 1406.6482]
$2015 / 16 / 19$	$R^{\tau \ell}\left(D, D^{*}\right)$	[Belle 1507.03233, 1603.06711, 1910.05864]	2017	$R^{\mu e}\left(K^{*}\right)$	$[$ LHCb 3/fb 1705.05802]
$2015 / 18$	$R^{\tau \mu}\left(D^{*}\right)$	$[$ LHCb 1506.08615, 1708.08856, 1711.02505]	2019	update of $R^{\mu e}(K)[$ LHCb 5/fb 1903.09252]	
2017	$R^{\tau \mu}(J / \psi)$	$[$ LHCb 1711.05623]	2019	$R^{\mu e}\left(K^{*}\right)$	[Belle 1904.02440]
		2019	$R^{\mu e}(K)$	[Belle 1908.01848]	$17 / 33$

Measurements of $R^{\tau \ell}(D)$ and $R^{\tau \ell}\left(D^{*}\right)$

see details and updates at https://hflav.web.cern.ch

- $R(D) \& R\left(D^{*}\right)$ comb. deviation from SM (HFLAV)

$$
3.1 \sigma
$$

\Rightarrow would increase to 3.8σ with SM prediction using FF's from LCSR + LQCD + UB + HQET [Bordone/Gubernari/Jung/van Dyk 1912.09335]

- single dev's from SM:

$$
R(D) \rightarrow 1.4 \sigma \text { and } R\left(D^{*}\right) \rightarrow 2.5 \sigma
$$

- $R^{\tau \mu}(J / \psi)=0.71 \pm 0.25 \Rightarrow 2 \sigma$ tension with SM

Combining experiments tricky:
\Rightarrow treat common systematics
Example:
$B \rightarrow D^{* *} \ell \bar{\nu}$ background
in $R(D)$ and $R\left(D^{*}\right)$
correlation impacts the tension:
$(2.9-3.6) \sigma$
[Bernlochner/Sevilla/Robinson/Wormser
2101.08326]

$18 / 33$

Measurements of $R^{\mu e}(K)$ and $R^{\mu e}\left(K^{*}\right)$

- same q^{2}-region in numerator and denominator $q^{2} \in\left[q_{a}^{2}, q_{b}^{2}\right]$

Measurement $R^{\mu e}(K)$

$R^{\mu e}(K)[1,6]=0.846_{-0.056}^{+0.062} \quad 2.5 \sigma$
[LHCb 1903.09252]

Measurement $R^{\mu e}\left(K^{*}\right)$

[LHCb 1705.05802, Babar 1204.3933, Belle 0904.0770]

$$
\begin{array}{rlrl}
R^{\mu e}\left(K^{*}\right)[0.045,1.1] & =0.66_{-0.07}^{+0.11} \pm 0.03 & 2.2 \sigma \\
R^{\mu e}\left(K^{*}\right)[1.1,6.0] & =0.69_{-0.07}^{+0.11} \pm 0.05 & 2.4 \sigma
\end{array}
$$

Latest Belle $R^{\mu e}\left(K, K^{*}\right)$ consistent with SM and LHCb
(larger errors)
[Belle 1904.02440, 1908.01848]

SM prediction

- "universality"

$$
R^{\mu e}(M) \approx 1+\mathcal{O}\left(m_{\ell}^{4} / q^{4}\right)+\mathcal{O}\left(\alpha_{e}\right)
$$

[CB/Hiller/Piranishvili 0709.4174]

- estimating QED $R^{\mu e}(M)[1,6]=1.00 \pm 0.01 \quad\left(M=K, K^{*}\right)$ [Bordone//sidori/Pattori 1605.07633]

Tensions in $b \rightarrow s \mu \bar{\mu}$ rates

Leptonic FCNC decay $B_{s} \rightarrow \mu \bar{\mu}$

$$
\left.\operatorname{Br}\right|_{\exp }=\left(2.69_{-0.35}^{+0.37}\right) \times 10^{-9}
$$

[LHCb-CONF-2020-002, CMS-PAS-BPH-20-003, ATLAS-CONF-2020-049]

$$
\begin{aligned}
\left.\mathrm{Br}\right|_{\text {th }}= & (3.66 \pm 0.14) \times 10^{-9} \\
& \quad \text { [Beneke/CB/Szafron 1908.07011] } \\
& \Rightarrow \text { tension } 2.4 \sigma
\end{aligned}
$$

$B^{+} \rightarrow K^{+} \mu \bar{\mu}$ data below SM prediction
[LHCb 1403.8044]

$B_{s} \rightarrow \phi \mu \bar{\mu}$ data below SM prediction 2.2σ
[LHCb 1506.08777]
\Rightarrow measured LHCb rates $(\ell=\mu)$ systematically below SM predictions

Tensions in angular distribution $B \rightarrow K^{*} \mu \bar{\mu}$

$$
\begin{array}{r}
\frac{\mathrm{d}^{4} \Gamma\left[\bar{B} \rightarrow \bar{K}^{*}(\rightarrow \bar{K} \pi) \ell \bar{\ell}\right]}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi} \simeq J_{1 S} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K} \\
+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{\ell}+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi \\
+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
+\left(J_{6 S} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+J_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi
\end{array}
$$

-12 $J_{i}\left(q^{2}\right)$ from $\bar{B} \rightarrow \bar{K}^{*} \ell \bar{\ell}+12 \bar{J}_{i}\left(q^{2}\right)$ from $B \rightarrow K^{*} \ell \bar{\ell}=24$ angular observables
\Rightarrow key to constrain all Wilson coefficients
\rightarrow LHCb: $B^{0} \rightarrow K^{* 0} \mu \bar{\mu} \quad$ [LHCb 4.7/fb 2003.04831]

$$
B^{+} \rightarrow K^{*+} \mu \bar{\mu} \quad[\text { LHCb 9/fb 2012.13241] }
$$

[also Belle, CMS, ATLAS, BaBar]

$$
P_{5}^{\prime} \equiv \frac{J_{5} / 2}{\sqrt{-J_{2 c} J_{2 s}}}
$$

- tensions in bins $q^{2} \in[4,6],[6,8] \mathrm{GeV}^{2}$ of about 2.5σ and 2.9σ
- $q^{2} \in[6,8]$ theory might not under control \Rightarrow hadronic $c \bar{c}$-contributions

B anomalies:
 Comments on SM and prospects

LFU ratios in $b \rightarrow c \ell \bar{\nu}_{\ell}$

SM predictions different approaches used to determine FF's
A) theory + experimental info on FF shape from $b \rightarrow c \ell \bar{\nu}_{\ell}$ to predict $b \rightarrow c \tau \bar{\nu}_{\ell}$
!!! assuming no NP in light $\ell=e+\mu \quad \Rightarrow \quad R^{e \mu}\left(D^{*}\right)=1.01 \pm 0.01 \pm 0.03$
B) only theory info on FF's
\Rightarrow No real issues with theory at current level of precision

Experiment

- tension seen by several experiments, but τ is in general difficult $!!!$ have seen in the past for $\operatorname{Br}\left(B^{-} \rightarrow \tau \bar{\nu}\right)$ too high in first measurements and later in agreement with SM
- latest Belle and LHCb measurements moved towards SM LHCb: 2015(lep), 2018(3 π); Belle: 2015(had,lep), 2017(had, π), 2019 (sl,lep)

In future

\Rightarrow improved measurements from Belle II and LHCb

- alternative ratio's $R^{\tau \mu}(M)$ with $M=J / \psi, X_{c}, \Lambda_{c}, \ldots$ can be interesting,
but usually modes that have lower statistics \Rightarrow can be cross checks if different experimental systematics

Theory of exclusive $b \rightarrow s \ell \bar{\ell}$

Dipole \& Semileptonic op's

$$
\begin{aligned}
Q_{7 \gamma\left(7 \gamma^{\prime}\right)} & =m_{b}\left[\bar{s} \sigma^{\mu \nu} P_{R(L)} b\right] F_{\mu \nu} \\
Q_{9\left(9^{\prime}\right)}^{\ell \ell} & =\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \\
Q_{10\left(10^{\prime}\right)}^{\ell \ell} & =\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]
\end{aligned}
$$

Factorisation into form factors (@ LO QED)
\Rightarrow No conceptual problems !!!
@ low q^{2} : FF's from LCSR (10 - 15)\% accuracy $B \rightarrow K$
(10
[Ball/Zwicky hep-ph/0406232, Khodjamirian et al. 1006.4945
Bharucha/Straub/Zwicky 1503.05534]
@ high q^{2} : FF's from lattice (6-9)\% accuracy
$B \rightarrow K$
$B \rightarrow K^{*}$
[Bouchard et al. 1306.2384 Horgan/Liu/Meinel/Wingate 1310.3722 + 1501.00367]

$24 / 33$

Theory of exclusive $\boldsymbol{b} \rightarrow \boldsymbol{s} \ell \bar{\ell}$

Nonleptonic

$$
\begin{aligned}
Q_{(1) 2} & =\left[\bar{s} \gamma^{\mu} P_{L}\left(T^{a}\right) c\right]\left[\bar{c} \gamma_{\mu} P_{L}\left(T^{a}\right) b\right] \\
Q_{3,4,5,6} & =\left[\bar{s} \Gamma_{s b} P_{L}\left(T^{a}\right) b\right] \sum_{q}\left[\bar{q} \Gamma_{q q}\left(T^{a}\right) q\right] \\
Q_{8 g\left(8 g^{\prime}\right)} & =m_{b}\left[\bar{s} \sigma^{\mu \nu} P_{R(L)} T^{a} b\right] G_{\mu \nu}^{a}
\end{aligned}
$$

at LO in QED

$$
\int d^{4} x e^{i q \cdot x}\left\langle M_{\lambda}^{(*)}\right| T\left\{j_{\mu}^{e m}(x), \sum_{i} C_{i} Q_{i}(0)\right\}|\bar{B}\rangle
$$

Large Recoil (low- q^{2})

1) QCD factorization or SCET, 2) LCSR
2) non-local OPE of $\bar{c} c$-tails

+ comb. with parametrizations from analyticity
[Beneke/Feldmann/Seidel hep-ph/0106067 + 0412400 Lyon/Zwicky et al. $1212.2242+1305.4797$ Khodjamirian et al. $1006.4945+1211.0234+1506.07760$

CB/Chrzaszcz/van Dyk/Virto 1707.07305 Gubernari/van Dyk/Virto 2011.09813]

Low Recoil (high- q^{2})

local OPE (+ HQET) \Rightarrow theory only for sufficiently large q^{2}-integrated obs's
[Grinstein/Pirjol hep-ph/0404250 Beylich/Buchalla/Feldmann 1101.5118]
\Rightarrow theoretically least understood
can't exclude at present as origin of P_{5}^{\prime} anomaly

SM predictions

Tensions in $b \boldsymbol{b} \boldsymbol{s} \ell \bar{\ell}$

- $\operatorname{Br}\left[B_{s} \rightarrow \mu \bar{\mu}\right]$ tension can be reduced by using $V_{c b}$ from exclusive $B \rightarrow\left(D, D^{*}\right) \ell \bar{\nu}$ $\left.\Rightarrow V_{c b}\right|_{\text {excl }}=(40.0 \pm 0.9) \times 10^{-3}$ [Bordone et al. 1912.09335] gives $\operatorname{Br}\left(B_{S} \rightarrow \mu \bar{\mu}\right)=(3.32 \pm 0.17) \times 10^{-9} \rightarrow 1.6 \sigma$
- $B^{+} \rightarrow K^{+} \mu \bar{\mu} \& B_{s} \rightarrow \phi \mu \bar{\mu}$: problems with $B \rightarrow K$ and $B_{s} \rightarrow \phi$ FFs particularly at low- q^{2} ?
- P_{5}^{\prime} anomaly: FF's cancel to some extend, maybe $c \bar{c}$ contributions underestimated

Experiment

- $R^{\mu e}\left(K, K^{*}\right)$ only from LHCb \Rightarrow maybe issues with e^{-}, despite many cross checks

In future

- $R^{\mu e}\left(K, K^{*}\right)$ independent measurements from Belle II
- P_{5}^{\prime} : using parametrizations of ($c \bar{c}$) contr.
\Rightarrow combination of theory input and data-driven determination from narrow-width region $B \rightarrow J / \psi+\left(K, K^{*}\right)$
[CB/Chrzaszcz/van Dyk/Virto 1707.07305 Chrzaszcz/Mauri/Serra/Coutinho/van Dyk 1805.06378 Mauri/Serra/Coutinho 1805.06401 Gubernari/van Dyk/Virto 2011.09813]

B anomalies:

New physics interpretation

Factorization via stack of effective theories (EFT)

- decoupling of SM and potential NP at electroweak scale μ_{EW}
- assumes no other (relevant) light particles below $\mu_{\text {EW }}$ (some Z^{\prime}, \ldots)

WEFT (weak EFT)

- \# of op's [Jenkins/Manohar/Stoffer 1709.04486] ($L+B$ conserving) dim-5: 70, dim-6: 3631
- perturbative part \rightarrow in SM under control \Rightarrow decoupling @ NNLO QCD + NLO EW \Rightarrow RGE @ NNLO QCD + NLO QED
- hadronic matrix elements
$\Rightarrow B$-physics
- $1 / m_{b}$ exp's \rightarrow universal hadr. objects
- Lattice
- light-cone sum rules (LCSR)

Factorization via stack of effective theories (EFT)

SMEFT (SM EFT)

- assume mass gap

```
\mu
```

(not yet experimentally justified)

- parametrize NP effects by dim- $5+6$ op's
\# of op's ($L+B$ conserving) dim-5: 1, $\quad \operatorname{dim}-6: 2499$
- 1-loop RGE [Alonso/Jenkins/Manohar/Trott 1312.2014]

WEFT (weak EFT)

- \# of op's [Jenkins/Manohar/Stoffer 1709.04486] ($L+B$ conserving) dim-5: 70, dim-6: 3631
- perturbative part \rightarrow in SM under control \Rightarrow decoupling @ NNLO QCD + NLO EW \Rightarrow RGE @ NNLO QCD + NLO QED
- hadronic matrix elements
$\Rightarrow B$-physics
- $1 / m_{b}$ exp's \rightarrow universal hadr. objects
- Lattice
- light-cone sum rules (LCSR)

$R^{\mu e}\left(K, K^{*}\right)$ - Which operators in WEFT?

- dipole and four-quark op's can not induce $R_{H} \neq 1$
- scalar op's: strongly disfavored
[Hiller/Schmaltz 1408.1627]
- tensor op's: only for $\ell=e$, but require interference with other op's
\Rightarrow vector op's: $\quad \mathcal{O}_{9\left(9^{\prime}\right)}^{\ell}=\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \quad$ and $\quad \mathcal{O}_{10\left(10^{\prime}\right)}^{\ell}=\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]$

$R^{\mu e}\left(K, K^{*}\right)$ - Which operators in WEFT?

- dipole and four-quark op's can not induce $R_{H} \neq 1$
- scalar op's: strongly disfavored
- tensor op's: only for $\ell=e$, but require interference with other op's
[Hiller/Schmaltz 1408.1627]
[Bardhan et al. 1705.09305] \Rightarrow vector op's: $\mathcal{O}_{9\left(9^{\prime}\right)}^{\ell}=\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \quad$ and $\quad \mathcal{O}_{10\left(10^{\prime}\right)}^{\ell}=\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]$
- chirality-flipped C_{i}^{\prime} disfavored
- preference for $\ell=\mu$ over $\ell=e$
- best single-WC scenario $C_{9}^{\mu}=-C_{10}^{\mu}$
[Aebischer et al. 1903.10434]

Coeff.	best fit	1σ	pull
C_{9}^{μ}	-0.97	$[-1.12,-0.81]$	5.9σ
C_{10}^{μ}	+0.75	$[+0.62,+0.89]$	5.7σ
C_{9}^{e}	+0.93	$[+0.66,+1.17]$	3.5σ
C_{10}^{e}	-0.83	$[-1.05,-0.60]$	3.6σ
$C_{9}^{\mu}=-C_{10}^{\mu}$	-0.53	$[-0.61,-0.45]$	6.6σ
$C_{9}^{e}=-C_{10}^{e}$	+0.47	$[+0.33,+0.59]$	3.5σ
$C_{9}^{\prime \mu}$	+0.14	$[-0.03,+0.32]$	0.8σ
$C_{10}^{\prime \mu}$	-0.24	$[-0.36,+0.12]$	2.0σ
$C_{9}^{\prime e}$	+0.39	$[-0.05,+0.65]$	1.2σ
$C_{10}^{\prime e}$	-0.27	$[-0.57,-0.02]$	1.1σ

- $C_{9}^{S M} \simeq 4.2$ and $C_{10}^{S M} \simeq-4.3$

Interpretation within SMEFT

SMEFT operators \Rightarrow most interesting semileptonic

$$
L_{L}=\binom{\nu_{L}}{\ell_{L}}, \quad Q_{L}=\binom{u_{L}}{d_{L}}
$$

$$
\begin{aligned}
& {\left[\mathcal{O}_{\text {lq }}^{(1)}\right]_{a b i j}=\left(\bar{L}_{L}^{a} \gamma_{\mu} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right)} \\
& {\left[\mathcal{O}_{\text {lq }}^{(3)}\right]_{a b i j}=\left(\bar{L}_{L}^{a} \gamma_{\mu} \tau^{\prime} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} \tau^{\prime} Q_{L}^{j}\right)}
\end{aligned} \quad \begin{array}{lll}
\text { describe } & u_{j} \rightarrow u_{i} \nu_{a} \bar{\nu}_{b}, & d_{j} \rightarrow d_{i} \nu_{a} \bar{\nu}_{b} \\
\text { FCNC's } & u_{j} \rightarrow u_{i} \ell_{a} \bar{\ell}_{b}, & d_{j} \rightarrow d_{i} \ell_{a} \bar{\ell}_{b}
\end{array}
$$

Interpretation within SMEFT

SMEFT operators \Rightarrow most interesting semileptonic

$$
L_{L}=\binom{\nu_{L}}{\ell_{L}}, \quad Q_{L}=\binom{u_{L}}{d_{L}}
$$

$$
\begin{aligned}
& {\left[\mathcal{O}_{l q}^{(1)}\right]_{a b i j}=\left(\bar{L}_{L}^{a} \gamma_{\mu} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right) \longrightarrow \quad \begin{array}{lll}
\text { describe } & u_{j} \rightarrow u_{i} \nu_{a} \bar{\nu}_{b}, & d_{j} \rightarrow d_{i} \nu_{a} \bar{\nu}_{b} \\
{\left[\mathcal{O}_{l q}^{(3)}\right]_{\text {abij }}=\left(\bar{L}_{L}^{a} \gamma_{\mu} \tau^{\prime} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} \tau^{\prime} Q_{L}^{j}\right)}
\end{array} \quad \text { FCNC's } \begin{array}{ll}
u_{j} \rightarrow u_{i} \ell_{a} \bar{\ell}_{b}, & d_{j} \rightarrow d_{i} \ell_{a} \bar{\ell}_{b}
\end{array}} \\
& \text { FCCC's } \\
& d_{j} \rightarrow u_{i} \ell_{a} \bar{\nu}_{b}+\text { h.c. } .
\end{aligned}
$$

Renormalization group mixing in SMEFT from $\mu_{\Lambda} \sim \mathcal{O}(\mathrm{TeV})$ to $\mu_{\mathrm{ew}} \sim 100 \mathrm{GeV}$:

- of semileptonic op's via $\mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$ gauge bosons
- resummation of large log's $L \equiv \ln \left(\mu_{\wedge} / \mu_{\mathrm{ew}}\right)$

$$
\left[\mathcal{C}_{l q}^{(i)}\right]_{\ell \ell 23}\left(\mu_{\mathrm{ew}}\right)=\underbrace{\left[\mathcal{C}_{l q}^{(i)}\right]_{\ell \ell 23}\left(\mu_{\Lambda}\right)}_{\text {self-mixing }}+\frac{\gamma_{i j} L}{(4 \pi)^{2}} \sum_{f}\left[\mathcal{C}_{l q}^{(j)}\right]_{f f 23}\left(\mu_{\Lambda}\right)
$$

[Alonso/Jenkins/Manohar/Trott 1312.2014]

- universal contribution = same for all lepton-flavor's ℓ

Interpretation within SMEFT

SMEFT operators \Rightarrow most interesting semileptonic

$$
L_{L}=\binom{\nu_{L}}{\ell_{L}}, \quad Q_{L}=\binom{u_{L}}{d_{L}}
$$

$$
\begin{aligned}
& {\left[\mathcal{O}_{l q}^{(1)}\right]_{a b i j}=\left(\bar{L}_{L}^{a} \gamma_{\mu} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} Q_{L}^{j}\right)} \\
& {\left[\mathcal{O}_{\text {lq }}^{(3)}\right]_{a b i j}=\left(\bar{L}_{L}^{a} \gamma_{\mu} \tau^{\prime} L_{L}^{b}\right)\left(\bar{Q}_{L}^{i} \gamma^{\mu} \tau^{\prime} Q_{L}^{j}\right)}
\end{aligned} \quad \begin{array}{lll}
\text { describe } & u_{j} \rightarrow u_{i} \nu_{a} \bar{\nu}_{b}, & d_{j} \rightarrow d_{i} \nu_{a} \bar{\nu}_{b} \\
\text { FCNC's } & u_{j} \rightarrow u_{i} \ell_{a} \bar{\ell}_{b}, & d_{j} \rightarrow d_{i} \ell_{a} \bar{\ell}_{b}
\end{array}
$$

Renormalization group mixing in SMEFT from $\mu_{\wedge} \sim \mathcal{O}(\mathrm{TeV})$ to $\mu_{\mathrm{ew}} \sim 100 \mathrm{GeV}$:

- of semileptonic op's via $\mathrm{SU}(2)_{L} \otimes \mathrm{U}(1)_{Y}$ gauge bosons
- resummation of large log's $L \equiv \ln \left(\mu_{\wedge} / \mu_{\mathrm{ew}}\right)$

$$
\left[\mathcal{C}_{l q}^{(i)}\right]_{\ell \ell 23}\left(\mu_{\mathrm{ew}}\right)=\underbrace{\left[\mathcal{C}_{l q}^{(i)}\right]_{\ell \ell 23}\left(\mu_{\Lambda}\right)}_{\text {self-mixing }}+\frac{\gamma_{i j} L}{(4 \pi)^{2}} \sum_{f}\left[\mathcal{C}_{l q}^{(j)}\right]_{f f 23}\left(\mu_{\Lambda}\right)
$$

[Alonso/Jenkins/Manohar/Trott 1312.2014]

- universal contribution = same for all lepton-flavor's ℓ

Matching SMEFT \rightarrow WEFT on $b \rightarrow c \tau \bar{\nu}$ and $b \rightarrow s \ell \bar{\ell}$ at tree-level at $\mu_{\mathrm{ew}} \sim 100 \mathrm{GeV}$

$$
\begin{aligned}
C_{V_{L}} & \propto \sum_{i} V_{2 i}\left[\mathcal{C}_{l q}^{(3)}\right]_{\tau \tau i 3}+\ldots \\
C_{9}^{\ell} & \propto\left[\mathcal{C}_{l q}^{(1)}\right]_{\ell \ell 23}+\left[\mathcal{C}_{l q}^{(3)}\right]_{\ell \ell 23}+\ldots
\end{aligned} \mathcal{C}_{10}^{\ell} \propto-\left[\mathcal{C}_{l q}^{(1)}\right]_{\ell \ell 23}-\left[\mathcal{C}_{l q}^{(3)}\right]_{\ell \ell 23}+\ldots
$$

Combined $b \rightarrow c \tau \bar{\nu}_{\tau}$ and $b \rightarrow s \ell \bar{\ell}$ in SMEFT

Scenario with two parameters at $\mu_{\Lambda}=2 \mathrm{TeV}$:

$$
\begin{array}{ll}
{\left[\mathcal{C}_{\text {lq }}^{(1)}\right]_{3323}=\left[\mathcal{C}_{\text {lq }}^{(3)}\right]_{3323}} & \leftarrow \ell=3=\tau \\
{\left[\mathcal{C}_{\text {lq }}^{(1)}\right]_{2223}=\left[\mathcal{C}_{\text {lq }}^{(3)}\right]_{2223}} & \leftarrow \ell=2=\mu
\end{array}
$$

If there was no mixing from $\mu_{\Lambda} \rightarrow \mu_{\mathrm{ew}}$, would expect at $\mu_{\text {ew }}$

$$
\begin{aligned}
C_{9}^{\mu} & \propto+\left[\mathcal{C}_{l q}^{(1)}\right]_{2223}+\left[\mathcal{C}_{l q}^{(3)}\right]_{2223} \\
C_{10}^{\mu} & \propto-\left[\mathcal{C}_{l q}^{(1)}\right]_{2223}-\left[\mathcal{C}_{l q}^{(3)}\right]_{2223} \\
C_{V_{L}}^{\tau} & \propto \sum_{x} V_{2 x}\left[\mathcal{C}_{l q}^{(3)}\right]_{33 \times 3}
\end{aligned}
$$

The mixing in SMEFT from semi-tauonic \rightarrow semi-muonic, provides a $C_{9}^{\text {univ }}$

BFP

$$
\begin{aligned}
& {\left[\mathcal{C}_{l q}^{(1)}\right]_{3323}=-5.0 \cdot 10^{-2} \mathrm{TeV}^{-2}} \\
& {\left[\mathcal{C}_{\text {lq }}^{(1)}\right]_{2223}=+3.9 \cdot 10^{-4} \mathrm{TeV}^{-2}}
\end{aligned}
$$

pull: 7.8σ
no bound from $B \rightarrow K^{(*)} \nu \bar{\nu}$, because depends on $\mathcal{C}_{l q}^{(1)}-\mathcal{C}_{l q}^{(3)}$

see also [2011.01212, 2012.14799]

$$
\text { can explain both } b \rightarrow c \tau \bar{\nu} \text { and } b \rightarrow s \ell \bar{\ell}
$$

Assuming tree-level and (couplings) ${ }^{2}=1$:

$$
1 / \sqrt{0.05} \approx 4.5 \mathrm{TeV}
$$

$$
1 / \sqrt{0.0004} \approx 50 \mathrm{TeV}
$$

very different scales for semi-tauonic and semi-muonic operators

UV completions

"Grand-scheme" models (MSSM etc.) usually predict $C_{9} \ll C_{10}$ (modified Z-penguin)
\Rightarrow contradict global fits $C_{9} \sim-C_{10}$
"Simplified" models in B-physics: massive bosonic mediators at $\mu_{\Lambda} \sim \mathcal{O}(\mathrm{TeV})$

[Buttazzo/Greljo/Isidori/Marzocca 1706.07808]
Colorless $S=1$:

$$
B^{\prime}=(1,1,0), W^{\prime}=(1,3,0)
$$

LQ's (LeptoQuarks) $S=0$:

$$
\begin{aligned}
& S_{1}=(\overline{3}, 1,1 / 3), S_{3}=(\overline{3}, 3,1 / 3) \\
& U_{1}=(3,1,2 / 3), U_{3}=(3,3,2 / 3)
\end{aligned}
$$

$\Rightarrow U_{1}$ most promising single-mediator scenario
\Rightarrow combinations of several LQs (also other rep's)
!!! single-mediator B^{\prime}, W^{\prime} problems with $B_{S}-m i x \&$ high- p_{T}

UV completions

- extended gauge \& Higgs sectors
- LQ's: weakly interacting (elementary scalar or gauge boson)
- LQ's: strongly interacting (scalar as LQ as GB, composite vector LQ)

\Rightarrow explicit models based on Pati-Salam group $\mathrm{SU}(4) \otimes \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$ with LQ's
\Rightarrow NP mainly coupled to 3rd generation
\rightarrow correlations to $b \rightarrow s \tau \bar{\tau}$, LFV signals $b \rightarrow s \tau \bar{\mu}, \tau \rightarrow \mu \gamma$ and collider physics $p p \rightarrow \tau \tau$

Summary

Summary

- b Physics is important sector to test SM and search for NP
- two complementary experiments LHCb and Belle II with unprecedented statistics \Rightarrow the future will bring many "anomalies", which will need to be resolved
- currently violation of lepton-flavor universality (LFU) in

$$
b \rightarrow c \ell \bar{\nu} \text { for } \tau / \ell @(3-4) \sigma \quad \text { and } \quad b \rightarrow s \ell \bar{\ell} \text { for } \mu / e @(2-3) \sigma
$$

\Rightarrow solid SM theory!

- other tensions in $b \rightarrow s \mu \bar{\mu}$ (mainly from LHCb)
P_{5}^{\prime} anomaly and $b \rightarrow s \mu \bar{\mu}$ rates \Rightarrow theory issues! (resort to data-driven strategies)
Intriguing part that LFU violation and tensions in $b \rightarrow s \mu \bar{\mu}$ can be explained rather economically:
- new physics explanations require (20-30)\% modifications of Wilson coefficients of SM \Rightarrow fits indicate huge improvement of goodness of fit w.r.t. SM " $(>6 \sigma)$ "
- separate and combined explanation in SMEFT possible
- NP couples preferably to 3rd generation \Rightarrow Leptoquark scenarios most efficient
- explicit UV completions with Pati-Salam groups $\operatorname{SU}(4) \otimes \operatorname{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R}$

Other tensions in b physics

Other tensions in b physics

$V_{c b}$ puzzle Tensions between different determinations of $\left|V_{c b}\right|$ from $B \rightarrow M \ell \bar{\nu}_{\ell}$

$$
\left.V_{c b}\right|_{D}=(40.7 \pm 1.1) \times\left. 10^{-3} \quad V_{c b}\right|_{D^{*}}=(38.8 \pm 1.4) \times 10^{-3} \quad V_{c b} \mid X_{C}=(42.00 \pm 0.64) \times 10^{-3}
$$

[Bordone/Gubernari/Jung/van Dyk 1912.09335, Gambino/Healey/Turczyk1606.06174]
2.1σ tension between $M=D^{*}$ and $M=X_{C}$ (inclusive)

$$
\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+}+\left(\pi^{-}, K^{-}\right) \text {puzzle } \quad b \rightarrow c \bar{u} s(d)
$$

4.4σ deviation for $\operatorname{Br}\left[\bar{B}^{0} \rightarrow D^{(*)+} K^{-}\right]$and $\operatorname{Br}\left[\bar{B}_{s} \rightarrow D_{s}^{(*)+} \pi^{-}\right]$from SM predictions

$$
\text { NNLO QCDF }+1 / m_{b} \text { corrections }
$$

$B_{d, s} \rightarrow K^{* 0} \bar{K}^{* 0}$ puzzle
2.6σ deviation of $\left.\frac{\tau_{B_{d}} \Pi_{d}}{\tau_{B_{s}} \Pi_{s}} \frac{\operatorname{Br}\left[B_{s} \rightarrow\left(K^{* 0} \bar{K}^{* 0}\right)_{L}\right]}{\operatorname{Br}\left[B_{d} \rightarrow\left(K^{* 0} \bar{K}^{* 0}\right)_{L}\right]}\right|_{\exp }=4.43 \pm 0.92$ from $\mathrm{SM} \approx 19.5_{-6.8}^{+9.3}$ using QCDF

$$
\left(\left|V_{t s}\right| /\left|V_{t d}\right|\right)^{2} \approx 24
$$

Backup Slides

Flavor phenomenon

Phenomenon of "Flavor" was important in shaping the Standard Model (SM)

Flavor phenomenon

Phenomenon of "Flavor" was important in shaping the Standard Model (SM)

- β-decay: ${ }^{A} Z \rightarrow{ }^{A}(Z+1)+e^{-}+\bar{\nu}_{e}$
" β-decay energy crisis" (J. Chadwick 1914) \Rightarrow W. Pauli proposes ν (1930)
- 4-Fermi-theory
[E. Fermi 1933/34]

$$
\sim \mathcal{G}_{F} \times\left[\bar{\Psi}\left(p^{+}\right) \Gamma \Psi(n)\right]\left[\bar{e} \Gamma^{\prime} \nu_{e}\right]
$$

Fermi coupling $\mathcal{G}_{F} \sim 1 / M^{2}$
\Rightarrow Effective Theory (EFT) of electroweak IA in SM

Flavor phenomenon

Phenomenon of "Flavor" was important in shaping the Standard Model (SM)

- β-decay: ${ }^{A} Z \rightarrow{ }^{A}(Z+1)+e^{-}+\bar{\nu}_{e}$
" β-decay energy crisis" (J. Chadwick 1914) \Rightarrow W. Pauli proposes ν (1930)
- 4-Fermi-theory
[E. Fermi 1933/34]

$$
\sim \mathcal{G}_{F} \times\left[\bar{\Psi}\left(p^{+}\right) \Gamma \Psi(n)\right]\left[\bar{e} \Gamma^{\prime} \nu_{e}\right]
$$

Fermi coupling $\mathcal{G}_{F} \sim 1 / M^{2}$
\Rightarrow Effective Theory (EFT) of electroweak IA in SM

Flavor was related to consitutents of n and p^{+}: up- and down-Quarks

- bound by strong force = Quantum-Chromo-Dynamics (QCD) to colorless hadrons
- quarks have fractional electric charges $Q_{u}=+2 / 3$ and $Q_{d}=-1 / 3$

Flavor phenomenon

Phenomenon of "Flavor" was important in shaping the Standard Model (SM)

- β-decay: ${ }^{A} Z \rightarrow{ }^{A}(Z+1)+e^{-}+\bar{\nu}_{e}$
" β-decay energy crisis" (J. Chadwick 1914) \Rightarrow W. Pauli proposes ν (1930)
- 4-Fermi-theory
[E. Fermi 1933/34]

$$
\sim \mathcal{G}_{F} \times\left[\bar{\Psi}\left(p^{+}\right) \Gamma \Psi(n)\right]\left[\bar{e} \Gamma^{\prime} \nu_{e}\right]
$$

Fermi coupling $\mathcal{G}_{F} \sim 1 / M^{2}$
\Rightarrow Effective Theory (EFT) of electroweak IA in SM

Flavor was related to consitutents of n and p^{+}: up- and down-Quarks

- bound by strong force = Quantum-Chromo-Dynamics (QCD) to colorless hadrons
- quarks have fractional electric charges $Q_{u}=+2 / 3$ and $Q_{d}=-1 / 3$

Electroweak IA \& QCD via locally gauge-invariant QFT with spontaneously broken symmetry

- conservation of charges in weak and strong interactions
\Leftarrow Noether-theorem
- forces are transmitted by spin-1 gauge bosons \Leftarrow Gluons in QCD \& massive $W^{ \pm}$and Z^{0} in EW IA
- simplest symmetry breaking by postulation of a single spin-0 field
\Leftarrow Englert/Brout-Higgs-Guralnik/Hagen/Kibble mechanism
- Fermi constant is an effective coupling $\mathcal{G}_{F} \propto g_{2}^{2} / m_{W}^{2}$

Yukawa couplings \rightarrow origin of Flavor

Scalar potential of $\mathrm{SU}(2)_{L}$ doublet

$$
V(H)=-\mu^{2}\left(H^{\dagger} H\right)+\Lambda\left(H^{\dagger} H\right)^{2} \quad H=\binom{H^{+}}{H^{0}}
$$

implies "mexican hat potential"

Yukawa interactions of Higgs-doublet with quarks

$$
\widetilde{H}=i \sigma^{2} H^{*}
$$

$$
\left.\mathcal{L}_{\text {Yukawa }} \propto \sum_{i, j=1}^{3} Y_{U, i j}\left[\bar{Q}_{L, i} \widetilde{H}\right] u_{R, j}+Y_{D, i j}\left[\bar{Q}_{L, i} H\right] d_{R, j}\right]
$$

$$
Q_{L, i}=\binom{u_{L, i}}{d_{L, i}}
$$

- 3×3 complex-valued Yukawa couplings $Y_{U, D} \Rightarrow$ not generation-diagonal !!!
$>$ invariant under global $\mathrm{G}_{S M}=\mathrm{U}(1)_{Y} \otimes \mathrm{U}(1)_{B} \otimes \mathrm{U}(1)_{L}$, but not under $\mathrm{G}_{\text {flavor }}$ of $\mathcal{L}_{\text {gauge }}$
\Rightarrow accidental global symmetries of SM (at dim-4 only): $B=$ baryon number, $L=$ lepton number

Yukawa couplings \rightarrow origin of Flavor

Scalar potential of $\mathrm{SU}(2)_{L}$ doublet

$$
V(H)=-\mu^{2}\left(H^{\dagger} H\right)+\Lambda\left(H^{\dagger} H\right)^{2} \quad H=\binom{H^{+}}{H^{0}}
$$

implies "mexican hat potential"
Parametrization of H close around minimum $\left\langle H_{0}\right\rangle$

$$
H=\binom{0}{v / \sqrt{2}}+\binom{G^{+}}{\left(h^{0}+i G^{0}\right) / \sqrt{2}}
$$

\Rightarrow Higgs particle described by fluctuations of h^{0} around $\left\langle H_{0}\right\rangle$
$\Rightarrow G^{ \pm}$and G^{0} contribute to massive $W^{ \pm}$and Z^{0}
Quark masses when breaking the $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{\mathrm{em}}$

$$
\mathcal{L}_{\text {Yukawa }} \propto \sum_{i, j=1}^{3} \frac{v Y_{U, i j}}{\sqrt{2}}\left[\bar{u}_{L, i} u_{R, j}\right]+\frac{v Y_{D, i j}}{\sqrt{2}}\left[\bar{d}_{L, i} d_{R, j}\right]+\ldots
$$

\Rightarrow Quark masses

$$
M_{U, i j} \equiv \frac{v Y_{U, i j}}{\sqrt{2}} \quad \text { and } \quad M_{D, i j} \equiv \frac{v Y_{D, i j}}{\sqrt{2}}
$$

Overview of decay channels for CKM determination

Also many strategies with hadronic B decays $B \rightarrow M_{1} M_{2}$

Hierarchies in masses and CKM

The determinations in framework of SM show huge hierarchies that can not be explained in the SM

- masses within each generation
- CKM matrix

$$
\lambda \approx 0.225
$$

Cabibbo angle

$$
V_{\text {CKM }} \approx\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} A \\
-\lambda & 1 & \lambda^{2} A \\
\lambda^{3} A & -\lambda^{2} A & 1
\end{array}\right)
$$

- in down-type FCNCs top-, charm- and up-contributions

$$
\begin{aligned}
& V_{t b} V_{t s}^{*} \approx-V_{c b} V_{c s}^{*} \sim \lambda^{2} A \\
& V_{u b} V_{u s}^{*} \sim \lambda^{4} A \\
& b \rightarrow d \\
& V_{t b} V_{t d}^{*} \sim V_{c b} V_{c d}^{*} \sim V_{u b} V_{u d}^{*} \sim \lambda^{3} A \\
& V_{c s} V_{c d}^{*} \approx-V_{u s} V_{u d}^{*} \sim \lambda \\
& V_{t s} V_{t d}^{*} \sim \lambda^{5} A
\end{aligned}
$$

\Rightarrow in $s \rightarrow d$ top part enhanced by m_{t}^{2}, but CKM-suppressed $\lambda^{4} A \approx 0.0021$ versus $\left(m_{c} / m_{W}\right)^{2} \approx 0.0003$
\Rightarrow CKM suppresses dim-6, such that dim-8 phenomenologically not negligible in $\Delta M_{K}, \varepsilon_{K}, K^{+} \rightarrow \pi+\nu \bar{\nu}$

SM predictions of $\boldsymbol{R}^{\tau \mu}(\boldsymbol{D})$ and $\boldsymbol{R}^{\tau \mu}\left(\boldsymbol{D}^{*}\right)$

Prediction requires knowledge of form factors (shape) \Rightarrow two strategies
A) use only theory input from LQCD, LCSR and unitarity bounds (UB) + HQET constraints
B) fit FF-parameters from data of $B \rightarrow D^{(*)} \ell \bar{\nu}$ for light $\ell=e+\mu$, assuming new physics only in $\ell=\tau$
\Rightarrow in the past combination of $A)+B$), but clearly prefer A)

SM predictions	$\boldsymbol{R}(\boldsymbol{D})$	$\boldsymbol{R}\left(\boldsymbol{D}^{*}\right)$	Ref.
LCSR only	0.269 ± 0.100	0.242 ± 0.048	[GKvD'18]
LQCD only	0.300 ± 0.008	-	[HPQCD'15]
LCSR + LQCD	0.296 ± 0.006	0.256 ± 0.020	[GKvD'18]
LCSR + LQCD + UB + HQET	0.2989 ± 0.0032	0.2472 ± 0.0050	[BGJvD'19]

[HPQCD'15 = HPQCD collaboration 1505.03925]
[GKvD'18 = Gubernari/Kokulu/van Dyk 1811.00983] provide method A) results in BGL parametrization \rightarrow [BGJvD'19 = Bordone/Gubernari/Jung/van Dyk 1912.09335]

- LQCD calculations of $B \rightarrow D^{*}$ FFs away from $q_{\text {max }}^{2}$ are work in progress
- Also $R\left(D_{s}\right)=0.2970 \pm 0.0034$ and $R\left(D_{s}^{*}\right)=0.2450 \pm 0.0082$ [BGJvD'19]
- also $R(J \psi), R\left(\Lambda_{C}\right), R\left(X_{C}\right)$ (partial predictions)

LeptoQuarks and $b \rightarrow s \in \bar{\ell}:$ "EW gauge mixing"

Assumption of hierarchy

$$
\mu_{\Lambda} \approx M_{\mathrm{LQ}}>\mathcal{O}(\mathrm{TeV})>\mu_{\mathrm{ew}} \approx 100 \mathrm{GeV}
$$

- at $\mu_{\wedge}:$ LQ decpl $=$ match on SMEFT (Standard Model EFT)
\Rightarrow at tree-level \rightarrow only SL- ψ^{4} op's (semi-leptonic)

$$
\propto\left(\bar{Q}_{j} \Gamma Q_{i}\right)\left(\bar{L}_{a} \Gamma L_{b}\right)
$$

LeptoQuarks and $b \rightarrow s \bar{\ell}$: "EW gauge mixing"

Assumption of hierarchy

$$
\mu_{\Lambda} \approx M_{\mathrm{LQ}}>\mathcal{O}(\mathrm{TeV})>\mu_{\mathrm{ew}} \approx 100 \mathrm{GeV}
$$

- at $\mu_{\wedge}:$ LQ decpl $=$ match on SMEFT (Standard Model EFT)
\Rightarrow at tree-level \rightarrow only SL- ψ^{4} op's (semi-leptonic)

$$
\propto\left(\bar{Q}_{j} \Gamma Q_{i}\right)\left(\bar{L}_{a} \Gamma L_{b}\right)
$$

- from $\mu_{\wedge} \rightarrow \mu_{\text {ew }}$: SMEFT RG evolution (renormalization group)
\Rightarrow mixing into $\mathrm{SL}-\psi^{4}$ op's $\propto\left(\bar{Q}_{j} \Gamma Q_{i}\right)\left(\bar{L}_{a^{\prime}} \Gamma L_{b^{\prime}}\right)$
\Rightarrow large log's $\ln \mu_{\Lambda} / \mu_{\text {ew }}$ [Alonso/Jenkins/Manohar/Trott 1312.2014]

$$
\mathcal{C}_{\mathrm{SL}-\psi^{4}}\left(\mu_{\mathrm{ew}}\right)=\frac{\gamma_{\mathrm{SL}, \mathrm{SL}}}{(4 \pi)^{2}} \ln \frac{\mu_{\Lambda}}{\mu_{\mathrm{ew}}} \mathcal{C}_{\mathrm{SL}-\psi^{4}}\left(\mu_{\Lambda}\right)
$$

LeptoQuarks and $b \rightarrow s \in \bar{\ell}:$ "EW gauge mixing"

Assumption of hierarchy

$$
\mu_{\Lambda} \approx M_{\mathrm{LQ}}>\mathcal{O}(\mathrm{TeV})>\mu_{\mathrm{ew}} \approx 100 \mathrm{GeV}
$$

- at $\mu_{\Lambda}:$ LQ decpl $=$ match on SMEFT (Standard Model EFT)
\Rightarrow at tree-level \rightarrow only SL- ψ^{4} op's (semi-leptonic)
$\propto\left(\bar{Q}_{j} \Gamma Q_{i}\right)\left(\bar{L}_{a} \Gamma L_{b}\right)$

- from $\mu_{\Lambda} \rightarrow \mu_{\mathrm{ew}}$: SMEFT RG evolution (renormalization group)
\Rightarrow mixing into $\mathrm{SL}-\psi^{4}$ op's $\propto\left(\bar{Q}_{j} \Gamma Q_{i}\right)\left(\bar{L}_{a^{\prime}} \Gamma L_{b^{\prime}}\right)$
\Rightarrow large log's $\ln \mu_{\Lambda} / \mu_{\text {ew }}$ [Alonso/Jenkins/Manohar/Trott 1312.2014]

$$
\mathcal{C}_{\mathrm{SL}-\psi^{4}}\left(\mu_{\mathrm{ew}}\right)=\frac{\gamma_{\mathrm{SL}, \mathrm{SL}}}{(4 \pi)^{2}} \ln \frac{\mu_{\Lambda}}{\mu_{\mathrm{ew}}} \mathcal{C}_{\mathrm{SL}-\psi^{4}}\left(\mu_{\Lambda}\right)
$$

- at μ_{ew} : matching of SMEFT on $\mathcal{L}_{\Delta \boldsymbol{B}=1}$ for $b \rightarrow \boldsymbol{s \ell \overline { \ell }}$ in terms of $\Delta B=1$ operators

$$
\begin{aligned}
Q_{9\left(9^{\prime}\right)}^{\ell} & =\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right] \\
Q_{10\left(10^{\prime}\right)}^{\ell} & =\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]
\end{aligned}
$$

Interpretation within SMEFT

Matching SMEFT on $b \rightarrow s \in \bar{\ell}$ at tree-level at μ_{ew}

$$
\begin{aligned}
C_{9}^{\ell} & \propto\left[\mathcal{C}_{q e}\right]_{23 \ell \ell}+\left[\mathcal{C}_{l q}^{(1)}\right]_{\ell \ell 23}+\left[\mathcal{C}_{l q}^{(3)}\right]_{\ell \ell 23}-\left(1-4 s_{W}^{2}\right)\left(\left[\mathcal{C}_{H q}^{(1)}\right]_{23}+\left[\mathcal{C}_{H q}^{(3)}\right]_{23}\right) \\
C_{10}^{\ell} & \propto\left[\mathcal{C}_{q e}\right]_{23 \ell \ell}-\left[\mathcal{C}_{l q}^{(1)}\right]_{\ell \ell 23}-\left[\mathcal{C}_{l q}^{(3)}\right]_{\ell \ell 23}+\left(\left[\mathcal{C}_{H q}^{(1)}\right]_{23}+\left[\mathcal{C}_{H q}^{(3)}\right]_{23}\right) \\
C_{9^{\prime}}^{\ell} & \propto\left[\mathcal{C}_{e d}\right]_{\ell \ell 23}+\left[\mathcal{C}_{l d}\right]_{\ell \ell 23}-\left(1-4 s_{W}^{2}\right)\left[\mathcal{C}_{H d}\right]_{23} \\
C_{10^{\prime}}^{\ell} & \propto\left[\mathcal{C}_{e d}\right]_{\ell \ell 23}+\left[\mathcal{C}_{l d}\right]_{\ell \ell 23}-\left[\mathcal{C}_{H d}\right]_{23}
\end{aligned}
$$

- $C_{9,10}$ depend on 5 Wilson coefficients
- $C_{9^{\prime}, 10^{\prime}}$ depend on 3 Wilson coefficients
- modified Z-coupl's $\mathcal{C}_{H q}^{(1,3)}$ and $\mathcal{C}_{H d}$ suppressed in $C_{9,9^{\prime}}$ by $\left(1-s_{W}^{2}\right) \sim 0.08$ w.r.t. $C_{10,10^{\prime}}$
- $C_{V_{L}} \propto \mathcal{C}_{l q}^{(3)}$ enters also $b \rightarrow c \tau \nu$

SMEFT operators: Semileptonic ψ^{4} and modified $Z, W^{ \pm}$-couplings $\psi^{2} H^{2} D$

$$
\begin{array}{lll}
\mathcal{O}_{l q}^{(1)}=\left(\bar{l}_{p} \gamma_{\mu} I_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right) & \mathcal{O}_{l q}^{(3)}=\left(\bar{l}_{p} \gamma_{\mu} \tau^{\prime} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{\prime} q_{t}\right) & \\
\mathcal{O}_{q e}=\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right) & \mathcal{O}_{l d}=\left(\bar{l}_{p} \gamma_{\mu} I_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) & \mathcal{O}_{e d}=\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right) \\
\mathcal{O}_{H q}^{(1)}=\left(H^{\dagger} i \overleftrightarrow{\left.\mathcal{D}_{\mu} H\right)\left[\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right],}\right. & \mathcal{O}_{H q}^{(3)}=\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu}^{a} H\right)\left[\bar{q}_{L}^{i} \sigma^{a} \gamma^{\mu} q_{L}^{j}\right] & \mathcal{O}_{H d}=\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H\right)\left[\bar{d}_{R}^{i} \gamma^{\mu} d_{R}^{j}\right]
\end{array}
$$

Interlude on SMEFT operators

Consider SMEFT operators, $i j m n=$ generation indices

$$
\left[\mathcal{O}_{l q}^{(1)}\right]_{i j m n}=\left(\bar{l}_{i} \gamma_{\mu} l_{j}\right)\left(\bar{q}_{m} \gamma^{\mu} q_{n}\right) \quad\left[\mathcal{O}_{l q}^{(3)}\right]_{i j m n}=\left(\bar{l}_{i} \gamma_{\mu} \tau^{a} l_{j}\right)\left(\bar{q}_{m} \gamma^{\mu} \tau^{a} q_{n}\right)
$$

these operator are made of $\operatorname{SU}(2)_{L}$ doublets

$$
q_{i}=Q_{L, i}=\binom{u_{L, i}}{d_{L, i}} \quad I_{i}=L_{L, i}=\binom{\nu_{L, i}}{e_{L, i}}
$$

If we do expansion in $\mathrm{SU}(2)_{\perp}$ components ($\tau^{a}=$ Pauli matrices, summation over a)

$$
\begin{aligned}
{\left[\mathcal{C}_{1}\right]_{i j m n}\left[\mathcal{O}_{l q}^{(1)}\right]_{i j m n} } & +\left[\mathcal{C}_{3}\right]_{i j m n}\left[\mathcal{O}_{\text {lq }}^{(3)}\right]_{i j m n} \\
& =\left[\left(\mathcal{C}_{1}+\mathcal{C}_{3}\right)_{i j m n}\left(\bar{u}_{i L} \gamma^{\mu} u_{j L}\right)\left(\bar{\nu}_{m L} \gamma_{\mu} \nu_{n L}\right)+\left(\mathcal{C}_{1}-\mathcal{C}_{3}\right)_{i j m n}\left(\bar{u}_{i L} \gamma^{\mu} u_{j L}\right)\left(\bar{\ell}_{m L} \gamma_{\mu} \ell_{n L}\right)\right] \\
& +\left[\left(\mathcal{C}_{1}-\mathcal{C}_{3}\right)_{i j m n}\left(\bar{d}_{i L} \gamma^{\mu} d_{j L}\right)\left(\bar{\nu}_{m L} \gamma_{\mu} \nu_{n L}\right)+\left(\mathcal{C}_{1}+\mathcal{C}_{3}\right)_{i j m n}\left(\bar{d}_{i L} \gamma^{\mu} d_{j L}\right)\left(\bar{\ell}_{m L} \gamma_{\mu} \ell_{n L}\right)\right] \\
& +2\left[\mathcal{C}_{3}\right]_{i j m n}\left[\left(\bar{u}_{i L} \gamma^{\mu} d_{j L}\right)\left(\bar{\ell}_{m L} \gamma_{\mu} \nu_{n L}\right)+\text { h.c. }\right] \leftarrow \text { CC's } \uparrow \text { FCNC's }
\end{aligned}
$$

Still need to rotate flavor \rightarrow mass basis: $\quad u_{L} \rightarrow V_{u} u_{L}, \quad d_{L} \rightarrow V_{d} d_{L}, \quad \nu_{L} \rightarrow U_{e} \nu_{L}, \quad \ell_{L} \rightarrow U_{e} \ell_{L}$
Contribute to all semileptonic CC and FCNC processes!

