Tests of lepton flavor universality and real time event selection on GPUs at LHCb

Dorothea vom Bruch

Aix Marseille Univ, CNRS/IN2P3, CPPM

February 1st 2021

CPPM seminar

Search for New Physics

- The Standard Model describes most particle physics phenomena extraordinarily well
- However, some phenomena on the macroscopic scale are not explained:
 - What is dark energy, dark matter?
 - Where does the matter-antimatter asymmetry come from?
- Some characteristics of the SM are also not understood:
 - Why are there three flavor generations?
 - Where does the pattern of masses and mixings of quarks and leptons come from?

→ Resolve discrepancies with particles or forces at new energy scales

How to search for New Physics?

Indirect searches

- Precision measurements of precisely calculated observables
- For example measuring

•••

.

- Lepton flavor universality & violation
- Angular distributions

Direct searches

- Directly detect new particles
 - Observe naturally existing particles at dedicated experiments (WIMPs, Axions etc.)
 - Produce them with particle accelerators

Lepton flavor universality

The SM predicts equal couplings between the electroweak bosons and leptons → Lepton flavor universality

In ratios of branching fractions form factor uncertainties and dependence from CKM matrix elements partially cancel → theoretically clean to probe coupling

$$\frac{d\Gamma}{dq^2}(H_b \rightarrow H_c \tau \nu) \propto G_F^2 |V_{cb}|^2 f(q^2)^2 \qquad \qquad R(H_c) = \frac{B(H_b \rightarrow H_c \tau \nu)}{B(H_b \rightarrow H_c \mu \nu)}$$

Lepton flavor universality in B decays

 $b \rightarrow sl^+l^-$

 $\mathcal{R}(\mathsf{D}^{(*)}) = \mathcal{B}(\mathsf{B} \rightarrow \mathsf{D}^{(*)} \mathbf{\tau} \mathsf{v}_{\tau}) / \mathcal{B}(\mathsf{B} \rightarrow \mathsf{D}^{(*)} \boldsymbol{\mu} \mathsf{v}_{\mu})$ $\mathcal{R}(\mathsf{K}^{(*)}) = \mathcal{B}(\mathsf{B} \rightarrow \mathsf{K}^{(*)}\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) / \mathcal{B}(\mathsf{B} \rightarrow \mathsf{K}^{(*)}\boldsymbol{e}^{+}\boldsymbol{e}^{-})$ × 2.0 (*Q) 8.0*) 20 $\Box \chi^2 = 1.0$ contours $R_{K^{*0}}$ LHCb Spring 2019 LHCb15 1.5 15 BaBar12 0.35 30 LHCb18 1.0 10 0.3 Average BaBar 0.5 0.5 ▲ Belle LHCb T Belle 19 Belle15 0.25 ▼ LHCb Run 1 BaBar LHCb • LHCb Run 1 + 2015 + 2016 Bele Belle17 World Average R(D) = 0.340 ±0.027 ±0.013 0.0∟ 0 0.0 +Average of SM predictions 0.2 5 10 15 20 5 10 15 20 R(D*) = 0.295 ±0.011 ±0.008 R(D) = 0.299 ±0.003 p = -0.38 $q^2 \,[{\rm GeV}^2/c^4]$ $q^2 [\text{GeV}^2/c^4]$ $R(D^*) = 0.258 \pm 0.005$ $P(\chi^2) = 27\%$ 0.3 0.5 0.2 0.4 R(D)

> R(D) and R(D*) compatible with the SM at the 3.1σ level (increased to 3.8σ with latest *theory prediction*) R(K) and R(K*) are compatible with the SM at 2.5 σ and 2.1-2.5 σ respectively

 $b \rightarrow clv$

Semileptonic $b \rightarrow clv$ decays

Pros

- High branching fraction → abundant
- Only one hadronic current → Theoretically clean

Cons

- Partially reconstructed signal (neutrinos!)
 - → Experimentally difficult
- Many backgrounds
- Large simulated samples required

LFU tests with $b \rightarrow clv$ transitions

- Many different decays to study: $\overline{B}^{_0} \rightarrow D^{_{(*)}} l \nu$, $\overline{B}^{_0} \rightarrow D^{_s} l \nu$, $\overline{B}^{_0} \rightarrow J/\psi l \nu$, $\overline{B}^{_0} \rightarrow \Lambda_c l \nu$
- In this talk: Focus on $\overline{B}{}^{_0} \rightarrow D^{*+} l \nu$

One place to study them: LHCb

LHC @ CERN

General purpose detector in the forward region specialized in beauty and charm hadrons

LHCb detector, 2011 - 2018

LHCb Run 1 R(D^{*})_{$\tau\mu$} with $\tau \rightarrow \mu\nu\nu$

- Same final state
- Tau vertex not well constrained

LHCb Run 1 R(D^{*})_{$\tau\mu$} with $\tau \rightarrow \mu\nu\nu$

- Same final state
- Tau vertex not well constrained

$$\mathcal{R}(\mathsf{D}^*) = \mathcal{B}(\mathsf{B} \rightarrow \mathsf{D}^{(*)} \mathbf{\tau} \boldsymbol{\nu}_{\tau}) / \mathcal{B}(\mathsf{B} \rightarrow \mathsf{D}^{(*)} \boldsymbol{\mu} \boldsymbol{\nu}_{\mu})$$

$$= 0.336 \pm 0.027$$
 (stat) ± 0.030 (syst

LHCb Run 1 R(D^{*})_{$\tau\mu$} with $\tau^+ \rightarrow \pi^+\pi^-\pi^+(\pi^0)v$

- Tau vertex well constrained
- Different final states
- Measure instead: $K(D^*) = \overline{B^0} \rightarrow D^{*+} \tau \cdot \overline{\nu_{\tau}} / \overline{B^0} \rightarrow D^{*+} 3\pi^{\pm}$
- → Need external inputs:
 - B(B₀→ D*+3π±)
 - $B(\overline{B}^{\circ} \rightarrow D^{*+} \mu \overline{\nu}_{\mu})$

LHCb Run 1 R(D^{*})_{$\tau\mu$} with $\tau^+ \rightarrow \pi^+\pi^-\pi^+(\pi^0)v$

CPPM LHCb group involved

- Tau vertex well constrained
- Different final states
- Measure instead: $K(D^*) = \overline{B^0} \rightarrow D^{*+} \tau \overline{\nu_{\tau}} / \overline{B^0} \rightarrow D^{*+} 3\pi^{\pm}$
- \rightarrow Need external inputs:
 - B(B⁰→ D*+3π±)
 - $B(\overline{B}_{0} \rightarrow D^{*+-}\mu^{-}\overline{\nu}_{\mu})$

𝕄(D*) = 0.291 ± 0.019 (stat) ± 0.026 (syst) ± 0.054 (ext) Analysis of Run 2 data ongoing

PRL 120, 171802 (2018)

In bins of BDT output trained to reduce D_s background

LHCb R(D^{*})_{eµ}

- Belle & BaBar have measured $R(D^*)$ for τ versus e and μ , LHCb only τ versus μ
- Goal: perform e-μ-τ universality test at LHCb
- First step: $R(D^*)_{e\mu} = B(B \rightarrow D^* e \nu_{\tau}) / B(B \rightarrow D^* \mu \nu_{\mu})$
- First semileptonics analysis with electrons in the final state at LHCb
- First test of $e-\mu$ universality with $b \rightarrow cl\nu$ at LHCb
- Previously measured by Belle:

 $R(D^*)_{e\mu} = 1.01 \pm 0.01 \text{ (stat)} \pm 0.03 \text{ (syst)}$

Phys. Rev. D 100, 052007 (2019)

LHCb R(D^{*})_{el}

Upstream

brem

 E_0

- Goal: perform e-μ-τ universality test at LHCb
- First step: $R(D^*)_{e\mu} = B(B \rightarrow D^* e \nu_{\tau}) / B(B \rightarrow D^* \mu \nu_{\mu})$
- First semileptonics analysis with electrons in the final state at LHCb
- First test of $e-\mu$ universality with $b \rightarrow cl\nu$ at LHCb
- Previously measured by Belle:

 $R(D^*)_{e\mu} = 1.01 \pm 0.01 \text{ (stat)} \pm 0.03 \text{ (syst)}$

Phys. Rev. D 100, 052007 (2019)

- Similar approach to $R(D^*)_{\tau\mu}$ with $\tau \rightarrow \mu \nu \nu$
- Challenge: electron reconstruction and yield at LHCb
- Signal yields from 3d template fit
- Efficiencies from simulation
- Electron reconstruction efficiency from tag-and-probe method on data

LHCb R(D^{*})_{eµ}

$\mathcal{R}(\mathsf{D}^*)_{\mathsf{e}_{\mathsf{H}}} = \mathcal{B}(\mathsf{B} \to \mathsf{D}^* \mathsf{e}_{\mathsf{V}}) / \mathcal{B}(\mathsf{B} \to \mathsf{D}^* \mathsf{\mu}_{\mathsf{V}})$

- Two distinct data samples
- Phase space chosen for similar electron and muon reconstruction efficiencies
- Looks like the uncertainties are under control
- Analysis under finalization

Proof of principle for future analyses with $b \rightarrow c \mathbf{e} v$ and $b \rightarrow c \tau (\rightarrow \mathbf{e} v v) v$ at LHCb Can measure $\mathcal{R}(D^*)_{e\tau} = \mathcal{B}(B^0 \rightarrow D \tau (\rightarrow \mathbf{e} v v) v) / \mathcal{B}(B \rightarrow D^* \mathbf{e} v)$ in the future

CPPM LHCb group involved

Much more data in the future!

- Higher and higher precision needed in the search for new physics
- More data especially useful for theoretically clean & statistically limited observables, such as b → clv transitions

Prospects for R(X)

Run 3 and beyond will shed light on the flavor anomalies observed today

Upgrade 1 of LHCb for Run 3

LHCb Upgrade I

LHCb Upgrade I

The MHz signal era

Run 3: Luminosity of $2x10^{33}$ cm⁻²s⁻¹, $\sqrt{s} = 14$ TeV

General purpose LHC experiments:

- Mainly direct searches
- Local characteristic signatures
- Signal rates up to ~100 kHz

LHCb:

- Intensity frontier
- No "simple" local criteria for selection
- Signal rates up to ~MHz

Change in trigger paradigm

Access as much information about the collision as early as possible

Tracks in the LHCb detector

Need information from many subdetectors \rightarrow read out full detector

Data selection only in software

- High Level Trigger 1 (HLT1):
 - Full charged particle track reconstruction
 - Few inclusive single and two-track selections
- High Level Trigger 2 (HLT2):
 - Real-time aligned and calibrated detector
 - Offline-quality track reconstruction
 - Particle identification
 - Full track fit

Data selection only in software

- High Level Trigger 1 (HLT1):
 - Full charged particle track reconstruction
 - Few inclusive single and two-track selections
- High Level Trigger 2 (HLT2):
 - Real-time aligned and calibrated detector
 - Offline-quality track reconstruction
 - Particle identification
 - Full track fit

Comparison to Run II trigger

- 5 x higher pileup
- 30 x higher rate into HLT1
- Up to 10 x efficiency improvement for some physics channels

Huge computing challenge

Track reconstruction @ 30 MHz

- Connect the dots to go from measurements to particle trajectories
- Many possible connections → huge combinatorics
- Do this for three sub-detectors, 30 million times per second

Today's computing landscape

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Can we use the FLOPS available on the highly parallel architecture of Graphics Processing Units (GPUs) to run HLT1 @ 30 MHz?

GPU architecture design

- Low core count / powerful ALU
- Complex control unit
- Large chaches

- High core count
- No complex control unit
- Small chaches

→ Latency optimized

> Throughput optimized

When to go parallel? \rightarrow Amdahl's law

Speedup in latency = 1 / (S + P/N)

- S: sequential part of program
- P: parallel part of program
- N: number of processors

Parallel

Sequential

Consider how much of the problem can actually be parallelized!

LHCb HLT1 elements

- Decode binary payload of four sub-detectors
- Reconstruct charged particle trajectories
- Identify muons
- Reconstruct primary and secondary decay vertices
- Select pp-bunch collisions based on
 - Single-track properties
 - Secondary vertex properties

Manageable amount of algorithms with highly parallelizable tasks

Common parallelization techniques

Raw data decoding

- Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system
- Parallelize over all subdetectors and readout units

Track reconstruction

- Consists of two steps:
 - Pattern recognition: Which hits belong to which track?
 - Track fitting: Done for every track
- Parallelize over combinations of hits and tracks

Vertex finding

- Reconstruct primary and secondary vertices
- Parallelize across combinations of tracks and vertex seeds

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem:	Good for				
- Run events in parallel - Reconstruct tracks in parallel	- High throughput applications				

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				
Huge compute load	Many TFLOPS				

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				
Huge compute load	Many TFLOPS				
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs				

Characteristics of LHCb HLT1	Characteristics of GPUs				
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications				
Huge compute load	Many TFLOPS				
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs				
Small raw event data (~100 kB)	Connection via PCIe \rightarrow limited I/O bandwidth				

Characteristics of LHCb HLT1	Characteristics of GPUs
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications
Huge compute load	Many TFLOPS
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs
Small raw event data (~100 kB)	Connection via PCIe → limited I/O bandwidth
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory

HLT1 on GPUs

LHCb: Characteristics for pattern recognition

- Average pile up of 6
- Few hundred few thousand hits in subdetectors
- Tens to hundreds of tracks in subdetectors
- Velo tracks are input for:
 - Primary vertex finding
 - Track forwarding to other detectors
- Mainly straight line tracks
- Large bend between UT and SciFi detectors
- Most tracks have $p_T < 2 \text{ GeV/c}$

Parallelization of reconstruction tasks

Split problem into independent tasks

Example: primary vertex (PV) reconstruction

200

z [mm]

Track reconstruction performance

HLT1: Trigger selections

			Trigger	Rate [kHz]		
		(ErrorEvent	0	\pm	0
			PassThrough	30000	\pm	0
			NoBeams	5	\pm	3
			BeamOne	18	\pm	5
	Monitorina &	5	BeamTwo	8	\pm	3
	calibration lines		BothBeams	4	\pm	2
			ODINNoBias	0	\pm	0
			ODINLumi	1	\pm	1
			GECPassthrough	27822	\pm	52
			VeloMicroBias	26	\pm	6
		(TrackMVA	409	±	23
Event rate reduced by factor 30			TrackMuonMVA	23	\pm	6
			SingleHighPtMuon	7	\pm	3
			TwoTrackMVA	503	\pm	26
	Physics selections	$\left\{ \right.$	${ m DiMuonHighMass}$	131	\pm	13
	Filysics selections		DiMuonLowMass	177	\pm	15
			DiMuonSoft	8	\pm	3
			D2KPi	93	\pm	11
			D2PiPi	34	\pm	7
	/	X	D2KK	76	±	10
	/		Total w/o pass through lines	1157	±	39

HLT1: Selection efficiencies

KstMuMuMD, Hlt1TwoTrackMVADecision

Efficiency Efficiency rs. 7720 Event ninators, 7303 Events AllEvents. x = 0.31 +/- 0.0 mate x = 0.32 +/-0.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0 18000 2000 14000 16000 2000 14000 16000 18000 12000 10000 12000 B0 TRUEPT/MeV B0 TRUEPT/MeV

KstEEMD, Hlt1TwoTrackMVADecision

CERN-LHCC-2020-006

Selection efficiencies for electron and muon final states similar

In Run 2: Electron selection efficiency roughly factor two worse than muons due to hardware level trigger 43

Computing performance

- Require about 215 GPU cards to process full HLT1 @ 30 MHz
- Have slots for 500 cards
- Significant throughput increase on latest Nvidia GPUs (RTX 3080, RTX 3090)

The Allen project

- Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen
- Framework developed for processing HLT1 on GPUs
- Runs on CPUs, Nvidia GPUs, AMD GPUs
- GPU code written in CUDA
- Cross-architecture compatibility via macros (ROCm for AMD, c++ for CPUs)
- Configuration via python
- Memory manager for GPU memory

• Named after Frances E. Allen

History: HLT1 architecture choice

pp collisions 40 Tbit/s 30 MHz event building 170 servers GPUs HLT1 1-2 Tbit/s ~1 MHz Server farm buffer on disk calibration and alignment

HLT2

storage

80 Gbit/s

Updated strategy (as of 5/2020)

CERN-LHCC-2020-006

- Developed two solutions simultaneously
- Both the multi-threaded CPU & the GPU HLT1 fulfilled the requirements from the 2014 TDR
- LHCb was in the luxury situation to choose among them
- Compared physics performance & priceperformance
 - \rightarrow decided for GPU solution

Towards commissioning

- Communication with event builder network
- Final data formats of sub-detector raw data
- Monitoring: histograms, counters
- As sub-detectors are commissioned, run algorithms on first data
 - Cosmic tracks
 - Calorimeter clusters (sources)

CPPM LHCb group involved

Integration test with event building server

Impact on event building when running HLT1 on GPUs inside the event building servers?

Monitoring temperatures, memory bandwidths, processing rate, ... Tested in production server candidate in October 2019 → To be repeated this year with latest hardware

- LHCb plays major role in studying the flavor anomalies in B decays
- Combination of various b \rightarrow clv measurements crucial to uncover possible New Physics
- A measurement with all three lepton species $R(D^*)_{\tau e \mu}$ will be possible at LHCb in Run 3
- Upgrade I for Run 3 basically turns LHCb into a new experiment
- Need software-only real-time selection @ 40 Tbit/s to exploit full physics potential
- Developed first complete high-throughput GPU trigger for an HEP experiment to tackle computing challenge
- Enough computing headroom to add more complex algorithms → even higher physics gain
- Heterogeneous trigger prepares LHCb for future upgrades (400 Tbit/s in Run 5)

Backup

- Algorithm sequences defined in python and generated at compile time
 - Algorithms to run with inputs / outputs, properties (minimum momentum cut-off etc.)
- Memory manager:
 - Large chunk of GPU memory allocated at start-up
 - Pieces of memory assigned to algorithms by memory manager
 - Memory size has to be known at compile time
- Cross-architecture compatibility via macros & few coding guide lines
- Support three modes:
 - Standalone project
 - Compiling with Gaudi for data acquisition
 - Compiling with Gaudi for simulation workflow and offline studies

Kalman filter

Improved track description → better impact parameter resolution

- Simple: Simplified Kalman filter with constant momentum assumption
- Param.: Parameterized Kalman filter with momentum estimate from SciFi track reconstruction

Systematic uncertainties in the future

- Main systematics:
 - Limited size of simulated samples
 - Modeling of fit components: Dedicated control samples & simulated samples
 - Data-driven method to obtain electron reconstruction efficiency from dedicated control samples
- Large statistics simulation is a software challenge, not part of this talk
- Larger data sets will improve precision of components from dedicated control samples

One electron is only reconstructed in the vertex detector

One electron is fully reconstructed and paired with a kaon

Background is suppressed through B and J/ ψ mass constraints This also provides the probe electron's momentum

After upgrade I (Run 3), trigger efficiencies for electrons will significantly improve (see second part of the talk)

Beauty and charm decays

- B^{±/0} mass ~5.3 GeV
 - → Daughter $p_T O(1 \text{ GeV})$
- $\tau \sim 1.6 \text{ ps} \Rightarrow \text{flight distance } \sim 1 \text{cm}$
- Detached muons from $B \rightarrow J/\Psi X$, $J/\Psi \rightarrow \mu^+\mu^-$
- Displaced tracks with high p_{T}

- D^{±/0} mass ~1.9 GeV
 - → Daughter $p_T O(700 \text{ MeV})$
- $\tau \sim 0.4 \text{ ps} \rightarrow \text{flight distance } \sim 4 \text{mm}$
- Also produced from B decays

PV: Primary vertex SV: Secondary vertex IP: Impact parameter: distance between point of closest approach of a track and a PV Why no low level trigger?

Low level trigger on $\mathsf{E}_{_{\mathsf{T}}}$ from the calorimeter

Low level trigger on muon p_{τ} , B $\rightarrow K^* \mu \mu$

Need track reconstruction at first trigger stage

Velo detector: clustering

Velo detector: track reconstruction

57

Velo detector: primary vertex reconstruction

UT detector: track reconstruction

P. Fernandez Declara, D. Campora Perez, J. Garcia-Blas, D. vom Bruch, J. Daniel Garca, N. Neufeld, IEEE Access 7 (2019)

SciFi detector

Four multi-wire proportional chambers Interleaved with iron walls

Graphics requirements

Graphics pipeline

- Huge amount of arithmetic on independent data:
 - Transforming positions
 - Generating pixel colors
 - Applying material properties and light situation to every pixel

Hardware needs

- Access memory simultaneously and contiguously
- Bandwidth more important than latency
- Floating point and fixed-function logic

→ Single instruction applied to multiple data: SIMT

Selection name	Criteria
1-Track	Single displaced track with high p_{τ}
2-Track	Two-track vertex with significant displacement and $\boldsymbol{p}_{_{T}}$
High-p _T muon	Single muon with high p _T
Displaced diumuon	Displaced di-muon vertex
High-mass dimuon	Di-muon vertex with mass near or larger than the J/ Ψ

Criteria applied to signal decays in efficiency calculations

b and c hadrons	$p_{\rm T} > 2 { m ~GeV}$
	$\tau > 0.2 \text{ ps}$
b and c hadron children	$p_{\rm T} > 200 { m MeV}$
	$2 < \eta < 5$
	reconstructible in the Velo and SciFi detector (long track)
Z children	$p_{\rm T} > 20 { m ~GeV}$
	$2 < \eta < 5$
	reconstructible in the Velo and SciFi detector (long track)

Throughput versus occupancy

- Data volume proportional to occupancy
- Low performance decrease at high occupancy

 \rightarrow will be able to handle real data (likely higher in occupancy than simulation)

GPUs for throughput measurement

Card	# cores	Max freq.	Cache	DRAM	DRAM	CUDA	Allen	
		(GHz)	(MiB, L2)	(GiB)	type	cap.	settings	
Geforce GTX 670	1344	1.06	0.5	1.95	GDDR5	3.0	Low	
Geforce GTX 680	1536	1.14	0.5	1.95	GDDR5	3.0	Low	
Geforce GTX 780 Ti	2880	0.93	1.5	2.95	GDDR5	3.5	Low	
Geforce GTX 980	2048	1.29	2	2.01	GDDR5	5.2	Low	
Geforce GTX TITAN X	3072	1.08	3	11.92	GDDR5	5.2	High	
Geforce GTX 1060 6G	1280	1.81	1.5	1.5 5.94 GDDR5 6.1		6.1	Low	
Geforce GTX 1080 Ti	3584	1.67	2.75	10.92	GDDR5	6.1	High	
Geforce RTX 2080 Ti	4352	1.545	6	10.92	GDDR5	7.5	High	
Tesla T4	2560	1.59	4	15.72	GDDR6	7.5	High	
Tesla V100 32GB	5120	1.37	6	32	HBM2	7.0	High	