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Outline

e Particle flow and machine learning

e Particle flow calorimetry

e Regular geometries

e Irregular geometries

e Seedless end-to-end inference

e \ery strong focus on calorimeters

Advanced deep neural
networks for high-granularity
calorimeters.

=

high-granularity calorimeters ...

ot

Deep Neural Networks for ...

Image search using this talk's title
(today, on my laptop)

e More focus on techniques rather than results
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<) Particle Flow in a

o “|dentify individual particles in the detector”
e “combining information from detector subsystems”
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e PF: Resolution

» Tracking resolution worsens with momentum
» Calorimeter resolution increases with momentum

o
N
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e PF: Pileup

arXiv:1706.04965

» Need to disentangle contributions from
pileup from primary interaction

» Strong need to identify individual
particles

Partially merged
e PF: Substructure hadronic top

. . . . . (W jet + b jet)
» Potential increases with better single particle momentum and .
position resolution ,.A‘

e For all future detectors the design is heavily influenced by Fully merged

- . hadronic top jet N\
PF considerations \
» Trackers are traditionally highly granular D, XD/

» What is missing are truly high granular calorimeters Shin-Shan Eiko Yu



https://indico.in2p3.fr/event/16354/contributions/59512/attachments/49415/62820/Lecture_20180824_part2.pdf

High granularity calorimeters

CALICE, FCChh (barrel),
CMS HGCal

e In parts very different
concepts
» LA,
» Si (+SiPM)
» SiPM

e However similar granularities

» About 1cm x 1cm transversal
(ECal)
M. Aleksa: https://indico.cern.ch/event/838435 » > 10 layers longitudinal
F.Simon: https://indico.cern.ch/event/838435
CMS TDR 17-007
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https://indico.cern.ch/event/838435
https://indico.cern.ch/event/838435

Liabbiid

High granularity calorimeters

e Similar w.r.t. basic reconstruction concepts

e Handle Pileup
» 200 (CMS) - 1000 (FCChh)
e High precision energy
measurements

» Missing energy/precision
resolution

e Fully consistent Particle Flow

e Particle ID

» Also part of software
compensation

e Fully utilise timing
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<) Calorimeter focused PF

Particle
Flow, pileup
suppression

Energy reconstruction

Shower separation

0"
*

* L *
0. u “
0.‘ ' ‘0

Track association

e Very complex task, with a lot of inter-dependencies

Software
Compensation
etc

Shower identification

0"
.




<) “Classic” Reconstruction

Development Workflow for non-ML reconstruction
1. Write an algorithm based on physics principles

algorithm

collection of
Acat = :
Images courtesy of Fei Fei Li's TED talk (or, a neutrino) Certaln Shap eS

Credit: Kazuhiro Terao at IML forum

e Cat reconstruction successful ! ... ?
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https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf

<) Real Life Cats and Cows

A

Development Workflow for non-ML reconstruction

Run on simulation and data samples

Observe failure cases, implement fixes/heuristics

Iterate over 2 & 3 till a satisfactory level is achieved

Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

2,
3.
4.
5.

Partial cat r ? E S A cat = collection of
(escaping the detector) Stretching cat (Nuclear Physics) (or,aneutrino)  Certain Shapes

Credit: Kazuhiro Terao at IML forum

e Usually, one team would focus and optimise the head
reconstruction, the tail, ... binds a lot of person power!

e Each step individually optimised using some local metric

e This procedure actually produces hardly traceable biases in a
variety of steps

e No global optimisation possible (or at least very hard)
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https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf

<) Why Machine Learning?

e Allows introducing many free parameters in the model
» Higher chance of generalisability (also to partial cats)

e Inner workings of the models can be ‘black boxes'..

» But did we understand all the biases that went into the
‘standard chain’?

: /
\ .,i (X

» Methods in place to mitigate data/simulation differences Rt G iRl

g
5

S it
v s

» Newer networks are designed to be more transparent

e Can be trained using best knowledge
» Human labelled images

» Based on simulation encoding all our physics knowledge
beyond spheric cows

e Forces us to define an optimisation metric WebSystemer.no
» Needs clear definition of the final goal ’

e Fully differentiable
» Can be optimised automatically — once setup and understood frees a lot of person power
» NB: Opens up possibilities for end-to-end optimised detector design [IML, MODE]

Jan Kieseler 9


https://indico.cern.ch/event/852553/timetable/#b-394799-workshop-wednesday-mo
https://userswww.pd.infn.it/~dorigo/MODE.html

HG calorimeters and ML

CMS Phase-2 Simulation Preliminary

truth
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e High granularity calorimeters produce 3D/4D images of showers

e Deep neural networks have made many advances possible in the last years

» Image classification, face recognition, ...., self-driving cars, ...
» More and more applications in HEP (jet-tagging,...)

e Proven to be very powerful where 'things get messy’




) Basic DNN building blocks

e Three off-the-shelf DNN types / building blocks
» Fully connected ‘dense’ (very powerful but many parameters)
» Recurrent (‘time’ series, good for sparsity, less parallelisable)
» Convolutional (translation invariant structures, key to image processing)

e Rather recent developments: Graph neural networks

> WI” cover detaiIS Iater oont layer Mi0den Tayver 1 bidden layer 3 bidden layer 3 5
e All mostly matrix o o :
multiplications e r—
» Fast and parallelisable N s
» Approximate an unknown . Vo)
. . ] .
function: structure is the key! R s
o ol o
LA )ik
®
A = A A— A—— A ¢ e @
® ¢
b bbb

e Trained by minimising a loss function Adam: D. Kingma, J. Ba, arXiv:1412.6980, conf. paper

AdaGrad: J. Duchi, E. Hazan, Y. Singer (2011)
RMSProp: T. Tieleman, G. Hinton (2012)
Stochastic gradient descent: H. Robbins; S. Monro (1951)
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<) Particle Identification

e Most important: separate EM showers Fraction in first 22 layers 3
MC muons —

from hadronic showers CALICE AHCAL

104 4

- . MC pions (showering) . - -
» Utilise global shower shape variables Work in progress Z.ti’}

103 4 -
-
- e

Shower radius 102 - P -
107 5 MC muons :
MC electrons 10! 4 { -
MC pions (showering)
103 - -
CALICE AHCAL 10 -
L7 ] Work in progress
101 4
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» Process individual hits with DNNs based on ALl = I
off-the shelf convolutional layers as used for ;-} f}jf_p;zo cev | i
Computer VISIOn (_-c) IR S e SRS U o

—
<
N

e High performance particle classification
even in h|gh p|leup enVirOnmentS iS 107° :i.rrr.:ir.rrrgrri;r;:;r:irrérrararri.:r.rirgrr:;::;:riirirrérrariarr:.irr.r:rgrir;r:;::;riarréir;:arir.:r:.irrgrri;rr;ii;r:iriérrair;ri.:rr.:rrgrr:;riirrr-.——
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possible already using off-the shelf Electron and photon efficiency
architectures

Plots: V. Bocharnikov,
CMS TDR-17-007
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, <) Fast Pattern Recognition

e [dentify non pointing showers from BSM long-lived particle

e Study performed in the forward region (similar to CMS HGCal '\||

decays

geometry)

e Aim for first-level trigger
» Needs to be very fast
» Rather “simple” low-parameter CNN

e Proof of concept is promising

» Next step: FPGA implementation
(e.g. with HLS4ML [2])
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J. Alimena, Y. liyama, JK; arxiv:2004.10744, JINST
[2] arxiv:1804.06913
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<) Software compensation

e Separate electromagnetic and hadronic components
» Strongly increased resolution for hadron showers

e Human engineered:

» weight EM components less than hadronic components
» Identify EM components by local energy density

e Machine-learning based
» Consider shower shapes, in particular longitudinal

» Feed in dense NNs

» Or CNNs for HGCal
testbeam simulation

e Promising in part.
at low energies

[%]

AE
E

Energy resolution,
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<) Results and linearity

e High gain from ML based approach 7Y ]
» Customised CNN |ayers with energy pass_through induding ;5 1102 —
‘compensating’ (small) corrections to it (ResNet inspired) h ) R e L ———
P ]
° Sampllng term Of Only 37% 0.96 | ]

m§ 0.18 FCC-hh simulation (Geant4)

\\/ 0.16 n @ n=0.36
e Linearity at edges not optimal — very common S 0.14 —+— Benchmark 48%/VE @®2.2%

» Network learns quickly: E>0 0.12 —=— DNN 37%//E ® 1%

» Expectation value and mean differ 0.1
0.08

0.06

N 0.04

] 0.02 - EMB+HB

08T ::“\_‘ O 1 Lol 1 Lo gl L oo vl
N 10 10° 10*

oet E [GeV]

1.6 1.2 0.8 0.4 0 0.4 0.8 12 16
X

C. Neubuser, et al, arXiv:1912.09962
More details will be in C. Neubijser, JK, paper in prep.




<) ML for detector design

0.1 gy
|

e Turn it around: use DNN as a generic tool for 2= 009 i Hormo POW Calorimeter
. . <_ 008 —

(almost) optimal reconstruction & 007 \{\ Eiggim o

» Similar architecture as for FCChh studies 0.06 £ - lond Bramular” 13

| ong. granular.: =

» Adapts itself to granularity NS o 3 3

e Consider lead tungsten calorimeter .
» Factorise out sampling and electronics 0
effects
» Imx 1m x 2.5m
» 104, 200 Xo C. Neubuser, JK, P Lujan, arxiv:2101.08150

e Compare different segmentations
» Saturation effects visible []

e DNN based reconstruction generalises easily to

different designs MO DI
» Can help to inform best detector design with fast turn

around time Machine-learning Optimized Design of Experiments

» One of the goals of recently founded MODE collaboration



https://mode-collaboration.github.io/
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Going beyond regular geometries

e Detectors are not regular grids
» Size changes with depth and n
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B &
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Representation of showers

CALICE

-
.

- Ve . 2

=4 Image from https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a/e405 5 20cff

s e

e Dense energy deposits
e Deposits connected by tracks

= Showers have physical graph like structure
= Hits can be represented by point clouds




<) Irregular Structures

e Off-the shelf architectures...

hidden layer 1 hidden layer 2 hidden layer 3
input layer
L)
— < output layer (IID ®TD ®TD ®T) @
: LAl = [Al[A A [ A >
= 6 b b b . bl | T
T —0
Low input dimensionality Clear sense of sorting / sequences Regular grid

e ..do not represent particles or most sensor arrays in a detector
e Graph networks

» No sorting required N
» No grid AW
» Sense of connection o 2 o ®
» Basic principle: information exchange o ¢ . o » .0 o .

through edges (connections) . v : 5 :

O
» Very active area of research in CS ¢ i\ ©
® g Brandes et al., 2008

Jan Kieseler


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.6623

2

Going beyond CNNs

e Using graph neural networks for reconstruction *—o
» Represent showers as point clouds .o
» In particularly interesting: o ¢ e o
dynamic graph networks learning space ¢ ° 0= g o
transformations (no human engineered edges) ° ® .@ ® —
@] 0 > O ¢ O
O
e Here in a simplified irregular calorimeter ¢ f. N 7
®
» PbW, 35¢cm x35cm x 2.2 m 7 ° \

e Predict fractions per hit for 2 overlapping Sensor — vertex Connection — edge
charged pion showers

» Energy: 10-100 GeV




@ Applicable dynamic graph networks

e Proposal for 3D segmentation of point clouds:

EdgeConv/DGCNN [1] similar to our problem
» Transform features per vertex (sensor) (64)

» Calculate distances in new feature space

» Collect K neighbours

» Transform edge features
(distance vectors between sensors)

» Collect maxima to determine new vertex properties

ot

f

A
Il
¥

of

@ e A
\

— EdgeConv.  —{ § |— EdgeConv — EdgeConv  —» — & .

point cloud J‘,
L]

output

e Proven very powerful for segmentation
e Also successfully used for jet identification [2]

, _ _ _ _ Multiple operations scale:
e Fractional assignment is not ‘just’' segmentation VxKxF

e \Very resource demanding network architecture
» Realistically > 100k hits in a calorimeter, and billions of events to process

e Can we do better?

[1] Y. Wang, et al, arXiv:1801.07829
[2] H. Qu, L. Gouskos, arXiv:1902.08570




(O]

GravNet/GarNet

e Most resource demanding operation in DGCNN

» Determine neighbours in Fin dimensions

» lteration over edges between K neighbours in Fin dimensions

e GravNet/GarNet circumvent this problem

» Split coordinate and feature space: low dimensional coordinate space is easier to interpret

e GravNet
(a) ol ® o .
of* [\~ CIN ©)
O Jo \ \ TS5V
NP w g \
O FLr ./ V2 d/ Taf. M .
O . . /d3k 7] y {Zﬁ;‘N
s1 £ o, Ji=9 Max(Fy
V3 1 .
e GarNet

CIN ©

S = X V(di)

w \
Vi !
@©—fy \

S.R. Qasim, J.K, Y. liyama, M Pierini arXiv:1902.07987, EPJC

Jan Kieseler
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(&) Results

Truth - for reference Prediction o
N P s T e — DCCNN .,
401 W GravNet
I Binning
_jg: o Z I GarNet 76023
2l 4 B
"—220— 40 8
101 B 20
21(27(;?)1250 1500 ,.c0 0 ti(ms)  ti0/100(ms) 5V (s) my mi00/100 v
2
2.i VEityi(Pi — ki) Y. E;:p;
L = , R, = i LiPik
k Zi VEitki Zi Eitik
e Compare layers embedc.jed In very similar architectures 20 - 80% overlap
e The graph network architectures outperform the CNN 0.13] . beenn
approach 012 - G
e Similar performance but lower resource requirements of |Sou GarNet
GravNet versus DGCNN 2 010
e Competitive performance and very low resource 2 0.09]
requirements for Garnet <
e These architectures are applicable to (sparse) data with R —
any structure, e.g. tracking, jets, ... P festshower energy (GeV)
S.R. Qasim, J. K, Y. liyama, M Pierini arXiv:1902.07987, EPJC
Jan Kieseler 23



(]

Customisations

e Operations in V x K are expensive, also for memory.
e But: all information is already in memory

@) o}
S S2A o
8 \@/' 1
v ©O—.
o}m N
O

b T

S
7

S1

(d)

V1 ‘..ff
dik

™~

Sk = 5 V(di)

A\
o v

e Building custom fused CUDA kernels for fast inference/training

» No memory scaling with K nearest neighbours

Forward
0.05 - —&— custom
TF

0.04 1

0.03 A
[J]
£

0.02 A

0.01 A

0.00 A

0 20000 40000 60000 80000 100000 120000
# vertices

0.7

time

0.6 1

0.5 4

0.4

0.3 1

0.2 A

0.1 4

0.0 A

Gradient
—8— custom
TF
0 20000 40000 60000 80000 100000 120000
# vertices

Jan Kieseler




(O

Interpretation

e Visualise distances in the latent coordinate space

Layer: 3

1000
z(”nm)

1250 1500

1750

segmentation

output

e Without direct supervision, the networks tend to
cluster vertices belonging to the same shower

e Seems to be a common feature of distance based

dynamic graph networks

—

GravNet .
in torch_geometnc.

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GravNetConv

Jan Kieseler
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) Application to CMS HGCal

CMS Phase-2 Simulation Preliminary

e Dataset
» Full CMS HGCal simulation
» 1-5 showers from electrons, photons, muons, charged
pions within DR=0.5
» 10-100 GeV
» About 500k events
» Hits pre-clustered on each layer (less inputs)

e Use GravNet with small adjustments

truth

220
200
180
160
140
120
100
80

y [cm]

2/ 375
m 80
7 ~77350 100

» 5 output nodes, predicting shower fractions 125

» 2 additional message passing layers in latent space

CMS Phase-2 Simulation Preliminary

CMS Phase-2 Simulation Preliminary
truth

truth
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47550
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2/ 40
C/;U %7535

20 1%
0 A
325 20

CMS DP-2020/001, NeurlPS 2019




Results

CMS Phase-2 Simulation Preliminary CMS Phase-2 Simulation Preliminary CMS Phase-2 Simulation Preliminary
truth truth truth
220 240 220
200 220 200
180 _ 200 _ 180 _
160 § 180 & 160 5
- 160 =
140 > 140 > 140 >
120 120 120
100 100 100
80 80
04
Cmy = 7
350 *
325 100 5350325 20
CMS Phase-2 Simulation Preliminary CMS Phase-2 Simulation Preliminary CMS Phase-2 Simulation Preliminary
predicted predicted predicted
220 220
200 200
180 _ - 180 _
160 § § 160 5
140 > > 140 >
120 120
100 100
80
350 *
325 100 350555 20

e Excellent shower reconstruction

e But what if there are more than 5 particles?
CMS DP-2020/001




©)|  One approach: Edge classifiers

e Predicting an unknown number of outputs is highly non trivial for ML

e Inspired by HEP.TrkX [1,2], edge classifiers can overcome the problem
e Objects appear as vertices that are connected

to each other, but not connected to others Koo
» Separates showers e
e Edges can carry additional information like particle ID N 0. o o
. ‘\ o p o : : ®
e Recipe [3]: < ® .
» Pre-define a graph containing all possibly true edges 4‘0\ ® °
(e.g. neighbours within a sphere)

» Train the network and perform inference

— |E man VV> outpm —
opw o PR
EdgeConv [4]

» Select edges with a predicted probability of more than 0.5 to be true as connections

IO

[1] S. Farrel et al, arxiv:1810.06111,

[2] 10.1051/epjconf/201715000003

[3] X. Ju et al, https://ml4physicalsciences.github.io/files/NeurlPS_ML4PS 2019 83.pdf
[4] Y. Wang, et al, arXiv:1801.07829. (DGCNN)




©)|  Edge Classifier in calorimeter

e CMS HGCal
e Single charged pions in 0 PU

50

CMS Phase 2

| Simulation Preliminary

Predicted hit types:
A Hadronic Hit
¢ Electromagnetic Hit
+ Minimum lonizing Hit

40 A

Tau lepton decay
to charged and
neutral pions.

w
e
Layer (arb)
w
o

layer [arb]

N
o
N
o
1

10{ One color per cluster.
104

Correct noise (E = 12.33)
False signal (E = 0.78)

False noise (E = 1.60) 0 . . T . T
, _ —-300 —200 —-100 0 100 200 300
ol Correct signal (E = 837.91) Global X (cm)
-150 -100 -50 0 50 100 150
X [cm]

e Excellent discrimination between noise and signal

e Needs more developments for fractional assignments, very small objects

e N X K edges need to be evaluated to determine object and its properties
» Mean over edges for properties or e.g. weight with edge score

X. Ju et al, https://ml4physicalsciences.github.io/files/NeurlPS_ML4PS_2019 83.pdf



https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

Take a step back

Energy reconstruction

Particle Software
Flow, pileup Compensation
suppression ) > etc
Shower separation < > Shower identification

e \What we actually want: particle ID, momentum, position
e Segmentation just a tool
e Standard chain has many redundancies

Seeding (pattern recognition)
Clustering (pattern recognition)

3
>
» Software compensation (pattern recognition)
» ID (pattern recognition)

>

PFlow (pattern recognition)

e Always the same patterns
e One-stage approach can save resources and is easier to maintain
e Look at fast and gmtpk-c:ampa&bte computer vision approaches




@ Segmentation and Clustering: CV

e Maximum number of objects per

image/point cloud:
number of pixels/vertices

center

e Learn to move pixels towards the object @w@ e
e Map to Gaussian probability |

o 2
on(er) = exp (145 240

2
20%
e Assign seed score _ ~ -
;| N ‘;’ . td e e
Leed = N Z ]]'{Siesk}”‘si_gbk(e’i)Hz_i_]l{SiGbg}HS’i_0”2 cull ” P L ""’ L. . o
e Collect (from highest seeds score) around B » . Saad
the seeds - - [ o 4/4;' Lyl

e ‘Only' performs segmentation
e Heavily relies on the center of an object

» Problematic concept for particles D. Neven et al, arXiv:1906.11109

B. Zhang, P. Wonka, arXiv:1912.00145




(O]

Object condensation

e Aim

» Determine object properties (e.g. particle 4 momenta, ID) (graphs, images, ...)

» One shot: no seeding

» Aggregate all object properties in representative '‘condensation point’
» Detach input space (3D/4D/5D) from output space

» Resolve ambiguities without loU (boxes) concept

» Allow for fractional/ambiguous assignments

e Define truth:

» Assign each vertex to one object (e.g. highest fraction)
» Assign all object properties to each assigned vertex

e Predict per vertex
» Object properties
» Confidence f3
» Cluster coordinates x

e Define charge, attractive and repulsive potential

Jan Kieseler




<) Condensate and predict

Vi) = 1z = 2l Pos, and

100
Fa

Vi(x) = max(0,1 — ||z — z4l||)qak-

. _ Maximum charge
e Maximum [3/charge vertices are vertex for object k

center points *

e Encourage network to select one representative
point per object k A

N —
1 .

Lo = £ 20— Bor) + smy— b

1

e Also weight object property loss with 3

. ]
L,= S 5 Z L(t;, p:)(1 — n;) arctanh? 3;

o n;)arctanh® 8; ]

e Condensation points will carry all object properties

*NB: Removes saddle point for large N
e Very natural approach for dynamic graph NN

JK, arxiv:2002.03605, EPJC

Jan Kieseler



<) Example on image data

Image+condensation points Pixel class Cluster coordinates

Test image during training

e Proof of principle using images with large overlaps

» Condensation, object ID

» Rather simple CNN
e Inference

» Start with highest B vertex, collect points in t4=0.9

» Get object properties
» Repeat until Bmin=0.1
JK, arxiv:2002.03605, EPJC




<) Application to Particle Flow

e Simplified detector

» “Flat” in x,y: not curved
» ECal: 16 x 16 cells, each 22 x 22 mm?2 x 26 cm lead tungstate (CMS ECal)
» No magnetic field

» “Tracker”. 300um silicon 5.5 x 5.5 mm2 sensors, placed 5 cm in front of calorimeter

» Assign Gaussian smeared track momentum to highest energy hit
rel. resolution = ((p/100.)*(p/100.)*0.04 +0.01)

Geometry

e Shoot electrons and photons (50/50)
» E=1-200 GeV
» X,y random between -14 and 14 cm

e 1-9* particles per event

» Discard particle if no sensor can be
found where it leaves the highest fraction

e Use GravNet

y [mm]

e Track information can be incorporated
very naturally (just another point in the cloud)




Segmentation / Postprocessing

Hits OC cluster space
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e Start with highest 3 vertex, collect points in td=0.8
e Get object properties
e Repeat until Bmin=0.1




@ Particle Efficiency and Response
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e Excellent extrapolation properties beyond training conditions

e Low fake rate, and fakes only at low energies

e Improved single particle resolution

JK, arxiv:2002.03605, EPJC




©)|  Comparison on other variables

e Consistent observations also for hadrons using Delphes _
and comparable PF DNN approach E 5 — st
9 [T g | e
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Cumulative quantities: jets
e Standard PF does very well for 0 PU fraction (built-in energy conservation)

e \With higher PU fraction identification of individual particles way more important:
object condensation starts to be better, in particular at low momenta

JK, arxiv:2002.03605, EPJC




@ Object Condensation in CMS HGCal

CMS Phase-2 Simulation Preliminary

Input data
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Clustering dimension 2
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Clustering dimension 1

CMS Phase-2 Simulation Preliminary

Colors = truth showers
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CMS Phase-2 Simulation Preliminary

Colors = predicted showers

X (cm)

e Fully seedless one-shot end-to-end reconstruction
e Good segmentation performance in complex, realistic environments




It all comes together
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¢ All tools at hand

e Near future willbe is already exciting

e Approaches generalise very well

(e.g. similar efforts in neutrino physics)

arXiv:2007.03083

CMS Phase-2 Simulation Preliminary

Colors = predicted showers

X (cm)

Jan Kieseler
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https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf

&) Summary

e Machine learning enables fully differentiable, automatically optimisable particle flow

e Precise particle flow requires high granularity calorimeters.

e \Very promising performance of ML algorithms in high granularity calorimeters and
for PF

e Pushing forward developments for particle reconstruction

e Pushing forward new machine learning approaches




Backup




<) A look at computer vision

T. Lin et al. arXiv:1405.0

e \Well known from object detection in images

e Two main approaches:
» “Traditional’ anchor point based approaches [1-4], ...
» Anchor-free approaches, using each pixel [5,6, ...]

(1] J. Redmond et al, arXiv:1506.02640

2] Y. Hu et al, arXiv:1803.11187 [5] N. Wang et al, arXiv:1904.01355
3] R. Girshick, arXiv:1504.08083 [6] X. Zhou et al, arXiv:1904.07850
4] T. Lin et al, arXiv:1708.02002

Jan Kieseler
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<) Anchor point based methods

O Positive
@ Negative

=~ Ground
truth

bounding
/ \ box

Image boundary

e Anchor points (M x M per image)
e Assign object score/bounding box to anchor point
e Object can be found muiltiple times

e Anchor points grow with with N*(dim), make implicit assumptions on object size

e Not suitable for reconstruction based on high-dimensional detector signals

Figures: towardsdatascience.com



http://towardsdatascience.com

<) Key point methods

e Identify key points of the object
e Predict object properties from key points

Problem: identify the key points
e Also predict ‘center-score’

e Select highest score in the area as key point
» Seed identification!
» Heavily relies on objects to have a center: problematic for a particle

e Remaining ambiguities still need to be resolved N. Wang et al, arXiv:1904.01355

X. Zhou et al, arXiv:1904.07850
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<) Non maximum suppression

Before non-max suppression

e Start with highest score

e Downweight ‘close’ by objects
using loU (Soft NMS)

e Relies on bounding boxes

e Not easily adaptable to particles

Non-Max
Suppression

=)

After non-max suppression

in detectors

loU =

N. Bodla et al, arXiv:1704.04503
Figures: towardsdatascience.com
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