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•Particle flow and machine learning 


•Particle flow calorimetry


•Regular geometries


• Irregular geometries


•Seedless end-to-end inference


•Very strong focus on calorimeters

•More focus on techniques rather than results

Image search using this talk's title 
(today, on my laptop)
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Particle Flow in a

3

• “Identify individual particles in the detector”

• “combining information from detector subsystems”


•PF: Resolution

‣ Tracking resolution worsens with momentum

‣ Calorimeter resolution increases with momentum


•PF: Pileup

‣ Need to disentangle contributions from  

pileup from primary interaction

‣ Strong need to identify individual  

particles


•PF: Substructure

‣ Potential increases with better single particle momentum and 

position resolution


• For all future detectors the design is heavily influenced by 
PF considerations

‣ Trackers are traditionally highly granular

‣ What is missing are truly high granular calorimeters Shin-Shan Eiko Yu

arXiv:1706.04965

https://indico.in2p3.fr/event/16354/contributions/59512/attachments/49415/62820/Lecture_20180824_part2.pdf
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High granularity calorimeters
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CALICE, FCChh (barrel), 
CMS HGCal

• In parts very different 

concepts

‣ LAr,

‣ Si (+SiPM)

‣ SiPM


•However similar granularities

‣ About 1cm x 1cm transversal 

(ECal)

‣ > 10 layers longitudinalM. Aleksa: https://indico.cern.ch/event/838435


F.Simon: https://indico.cern.ch/event/838435

CMS TDR 17-007

https://indico.cern.ch/event/838435
https://indico.cern.ch/event/838435
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High granularity calorimeters
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•Handle Pileup

‣ 200 (CMS) - 1000 (FCChh)


•High precision energy 
measurements

‣ Missing energy/precision 

resolution

• Fully consistent Particle Flow


•Particle ID

‣ Also part of software 

compensation

• Fully utilise timing

•Similar w.r.t. basic reconstruction concepts 
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Calorimeter focused PF
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Energy reconstruction

Shower separation Shower identification

Software 
Compensation


etc

Particle 
Flow, pileup 
suppression

Track association

•Very complex task, with a lot of inter-dependencies
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“Classic” Reconstruction
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•Cat reconstruction successful ! … ?

Credit: Kazuhiro Terao at IML forum

https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
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Real Life Cats and Cows
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•Usually, one team would focus and optimise the head 
reconstruction, the tail, … binds a lot of person power!

•Each step individually optimised using some local metric

• This procedure actually produces hardly traceable biases in a 

variety of steps

•No global optimisation possible (or at least very hard)

Credit: Kazuhiro Terao at IML forum

https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
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Why Machine Learning?
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•Allows introducing many free parameters in the model

‣ Higher chance of generalisability (also to partial cats)


• Inner workings of the models can be ‘black boxes’..

‣ But did we understand all the biases that went into the  

‘standard chain’?

‣ Methods in place to mitigate data/simulation differences

‣ Newer networks are designed to be more transparent


•Can be trained using best knowledge 

‣ Human labelled images

‣ Based on simulation encoding all our physics knowledge 

beyond spheric cows


• Forces us to define an optimisation metric 

‣ Needs clear definition of the final goal


• Fully differentiable

‣ Can be optimised automatically → once setup and understood frees a lot of person power

‣ NB: Opens up possibilities for end-to-end optimised detector design [IML, MODE] 

WebSystemer.no

Microsoft

https://indico.cern.ch/event/852553/timetable/#b-394799-workshop-wednesday-mo
https://userswww.pd.infn.it/~dorigo/MODE.html
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HG calorimeters and ML
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•High granularity calorimeters produce 3D/4D images of showers


•Deep neural networks have made many advances possible in the last years

‣ Image classification, face recognition, …., self-driving cars, …

‣ More and more applications in HEP (jet-tagging,…)


•Proven to be very powerful where 'things get messy’



• Three off-the-shelf DNN types / building blocks

‣ Fully connected ‘dense’ (very powerful but many parameters)

‣ Recurrent (‘time’ series, good for sparsity, less parallelisable)

‣ Convolutional (translation invariant structures, key to image processing)


•Rather recent developments: Graph neural networks

‣ Will cover details later


•All mostly matrix 
multiplications

‣ Fast and parallelisable


•Approximate an unknown 
function: structure is the key!


• Trained by minimising a loss function

Jan Kieseler

Basic DNN building blocks
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Adam: D. Kingma, J. Ba, arXiv:1412.6980, conf. paper

AdaGrad: J. Duchi, E. Hazan, Y. Singer (2011)

RMSProp: T. Tieleman, G. Hinton (2012)

Stochastic gradient descent: H. Robbins; S. Monro (1951)
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Particle Identification
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•Most important: separate EM showers 
from hadronic showers

‣ Utilise global shower shape variables


‣ Process individual hits with DNNs based on 
off-the shelf convolutional layers as used for 
computer vision


•High performance particle classification 
even in high pileup environments is 
possible already using off-the shelf 
architectures
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Fast Pattern Recognition
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• Identify non pointing showers from BSM long-lived particle 
decays

•Study performed in the forward region (similar to CMS HGCal 

geometry)


•Aim for first-level trigger

‣ Needs to be very fast

‣ Rather “simple” low-parameter CNN


•Proof of concept is promising 

‣ Next step: FPGA  implementation  

(e.g. with HLS4ML [2])

J. Alimena, Y. Iiyama, JK; arxiv:2004.10744, JINST

[2] arxiv:1804.06913
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Software compensation
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•Separate electromagnetic and hadronic components

‣ Strongly increased resolution for hadron showers


•Human engineered: 

‣ weight EM components less than hadronic components

‣ Identify EM components by local energy density


•Machine-learning based

‣ Consider shower shapes, in particular longitudinal

‣ Feed in dense NNs


‣ Or CNNs for HGCal 
testbeam simulation


•Promising in part. 
at low energies

 C. Graf

Charged pions

CALICE 


Work in progress
Simulations
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HGCAL private work , Simulation, CERN H2, October 2018-π

T. Quast, CERN-THESIS-2019-367
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Results and linearity
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•High gain from ML based approach

‣ Customised CNN layers with energy pass-through including 

‘compensating’ (small) corrections to it (ResNet inspired)


•Sampling term of only 37%


•  Linearity at edges not optimal → very common

‣ Network learns quickly: E>0 

‣ Expectation value and mean differ
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ML for detector design
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• Turn it around: use DNN as a generic tool for  
(almost) optimal reconstruction

‣ Similar architecture as for FCChh studies

‣ Adapts itself to granularity


•Consider lead tungsten calorimeter

‣ Factorise out sampling and electronics 

effects

‣ 1m x 1m x 2.5m 

‣ 10 λ , 200 X0


•Compare different segmentations

‣ Saturation effects visible


•DNN based reconstruction generalises easily to 
different designs

‣ Can help to inform best detector design with fast turn 

around time


‣ One of the goals of recently founded MODE collaboration 

C. Neubüser, JK, P Lujan, arxiv:2101.08150
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Going beyond regular geometries
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•Detectors are not regular grids

•E.g. CMS HGCal

‣ Hexagonal sensors 

‣ Size changes with depth and η
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Representation of showers
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•Dense energy deposits


•Deposits connected by tracks


➡Showers have physical graph like structure

➡Hits can be represented by point clouds

CALICE Image from https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
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Irregular Structures
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• ..do not represent particles or most sensor arrays in a detector

•Graph networks

‣ No sorting required

‣ No grid

‣ Sense of connection

‣ Basic principle: information exchange  

through edges (connections)


‣ Very active area of research in CS

•Off-the shelf architectures…

Low input dimensionality Clear sense of sorting / sequences Regular grid

Brandes et al., 2008

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.6623
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Going beyond CNNs
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•Using graph neural networks for reconstruction

‣ Represent showers as point clouds

‣ In particularly interesting:  

dynamic graph networks learning space 
transformations (no human engineered edges)


•Here in a simplified irregular calorimeter

‣ PbW, 35 cm x 35 cm x 2.2 m


•Predict fractions per hit for 2 overlapping 
charged pion showers

‣ Energy: 10-100 GeV

Sensor → vertex Connection → edge
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Applicable dynamic graph networks
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•Proposal for 3D segmentation of point clouds: 
EdgeConv/DGCNN [1] similar to our problem

‣ Transform features per vertex (sensor) (64)

‣ Calculate distances in new feature space

‣ Collect K neighbours

‣ Transform edge features  

(distance vectors between sensors)

‣ Collect maxima to determine new vertex properties


•Proven very powerful for segmentation

•Also successfully used for jet identification [2] 


• Fractional assignment is not ‘just' segmentation


•Very resource demanding network architecture

‣ Realistically > 100k hits in a calorimeter, and billions of events to process


•Can we do better?

DGCNN

[1] Y. Wang, et al, arXiv:1801.07829

[2] H. Qu, L. Gouskos, arXiv:1902.08570

Multiple operations scale: 
V x K x F
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GravNet/GarNet
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•Most resource demanding operation in DGCNN

‣ Determine neighbours in FIN dimensions

‣ Iteration over edges between K neighbours in FIN dimensions


•GravNet/GarNet circumvent this problem

‣ Split coordinate and feature space: low dimensional coordinate space is easier to interpret


•GravNet


•GarNet
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Results
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• Compare layers embedded in very similar architectures

• The graph network architectures outperform the CNN 

approach

• Similar performance but lower resource requirements of 

GravNet versus DGCNN

• Competitive performance and very low resource 

requirements for Garnet

• These architectures are applicable to (sparse) data with 

any structure, e.g. tracking, jets, …
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Customisations
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•Operations in V x K are expensive, also for memory.

•But: all information is already in memory


•Building custom fused CUDA kernels for fast inference/training

‣ No memory scaling with K nearest neighbours
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Interpretation
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•Visualise distances in the latent coordinate space


•Without direct supervision, the networks tend to 
cluster vertices belonging to the same shower


•Seems to be a common feature of distance based 
dynamic graph networks

Prediction

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GravNetConv

GravNet 

in torch_geometric!



Jan Kieseler

Application to CMS HGCal
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•Dataset

‣ Full CMS HGCal simulation

‣ 1-5 showers from electrons, photons, muons, charged 

pions within DR=0.5

‣ 10-100 GeV

‣ About 500k events

‣ Hits pre-clustered on each layer (less inputs)


•Use GravNet with small adjustments

‣ 5 output nodes, predicting shower fractions

‣ 2 additional message passing layers in latent space

CMS DP-2020/001, NeurIPS 2019
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Results
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•Excellent shower reconstruction


•But what if there are more than 5 particles?
CMS DP-2020/001
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One approach: Edge classifiers
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•Predicting an unknown number of outputs is highly non trivial for ML


• Inspired by HEP.TrkX [1,2], edge classifiers can overcome the problem

•Objects appear as vertices that are connected 

to each other, but not connected to others

‣ Separates showers


•Edges can carry additional information like particle ID


•Recipe [3]:

‣ Pre-define a graph containing all possibly true edges 

(e.g. neighbours within a sphere)

‣ Train the network and perform inference


‣ Select edges with a predicted probability of more than 0.5 to be true as connections

EdgeConv [4]

[1] S. Farrel et al, arxiv:1810.06111,

[2] 10.1051/epjconf/201715000003 
[3] X. Ju et al, https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

[4] Y. Wang, et al, arXiv:1801.07829. (DGCNN)
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Edge Classifier in calorimeter
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•CMS HGCal

•Single charged pions in 0 PU


•Excellent discrimination between noise and signal

•Needs more developments for fractional assignments, very small objects

•N x K edges need to be evaluated to determine object and its properties

‣ Mean over edges for properties or e.g. weight with edge score

X. Ju et al, https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf
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Take a step back
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•What we actually want: particle ID, momentum, position

• Segmentation just a tool

• Standard chain has many redundancies


‣ Seeding (pattern recognition)

‣ Clustering (pattern recognition)

‣ Software compensation (pattern recognition)

‣ ID (pattern recognition)

‣ PFlow  (pattern recognition)


• Always the same patterns

•One-stage approach can save resources and is easier to maintain

• Look at                                                     computer vision approachesfast and graph-compatible
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Segmentation and Clustering: CV
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•Maximum number of objects per  
image/point cloud:  
number of pixels/vertices


• Learn to move pixels towards the object 
center

•Map to Gaussian probability


•Assign seed score


•Collect (from highest seeds score) around 
the seeds


• ‘Only' performs segmentation

•Heavily relies on the center of an object

‣ Problematic concept for particles D. Neven et al, arXiv:1906.11109


B. Zhang, P. Wonka, arXiv:1912.00145
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Object condensation
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•Aim

‣ Determine object properties (e.g. particle 4 momenta, ID) (graphs, images, …)

‣ One shot: no seeding

‣ Aggregate all object properties in representative 'condensation point’

‣ Detach input space (3D/4D/5D) from output space 

‣ Resolve ambiguities without IoU (boxes) concept

‣ Allow for fractional/ambiguous assignments


•Define truth:

‣ Assign each vertex to one object (e.g. highest fraction)

‣ Assign all object properties to each assigned vertex


•Predict per vertex

‣ Object properties

‣ Confidence β

‣ Cluster coordinates x


•Define charge, attractive and repulsive potential
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Condensate and predict
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•Maximum β/charge vertices are 
center points *

•Encourage network to select one representative 

point per object k


•Also weight object property loss with β


•Condensation points will carry all object properties

•Very natural approach for dynamic graph NN JK, arxiv:2002.03605, EPJC

Maximum charge  
vertex for object k

*NB: Removes saddle point for large N
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Example on image data
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•Proof of principle using images with large overlaps

‣ Condensation, object ID

‣ Rather simple CNN


• Inference

‣ Start with highest β vertex, collect points in td≅0.9

‣ Get object properties


‣ Repeat until βmin≅0.1
JK, arxiv:2002.03605, EPJC

Cluster coordinatesPixel classImage+condensation points

Test image during training
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Application to Particle Flow
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•Simplified detector

‣ “Flat” in x,y: not curved

‣ ECal:  16 x 16 cells, each 22 x 22 mm2 x 26 cm lead tungstate (CMS ECal)

‣ No magnetic field

‣ “Tracker”: 300µm silicon 5.5 x 5.5 mm2 sensors, placed 5 cm in front of calorimeter

‣ Assign Gaussian smeared track momentum to highest energy hit 

rel. resolution = ((p/100.)*(p/100.)*0.04 +0.01)


•Shoot electrons and photons (50/50)

‣ E = 1 - 200 GeV

‣ x,y random between -14 and 14 cm


• 1-9* particles per event

‣ Discard particle if no sensor can be  

found where it leaves the highest fraction


•Use GravNet 


• Track information can be incorporated 
very naturally (just another point in the cloud)

Geometry
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Segmentation / Postprocessing
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•Start with highest β vertex, collect points in td≅0.8

•Get object properties

•Repeat until βmin≅0.1

OC cluster spaceHits
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Particle Efficiency and Response
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•Excellent extrapolation properties beyond training conditions

• Low fake rate, and fakes only at low energies

• Improved single particle resolution
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Comparison on other variables
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Cumulative quantities: jets

•Standard PF does very well for 0 PU fraction (built-in energy conservation)

•With higher PU fraction identification of individual particles way more important: 

object condensation starts to be better, in particular at low momenta
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•Consistent observations also for hadrons using Delphes 
and comparable PF DNN approach 
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Object Condensation in CMS HGCal
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• Fully seedless one-shot end-to-end reconstruction 

•Good segmentation performance in complex, realistic environments
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It all comes together
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•All tools at hand

•Near future will be is already exciting

•Approaches generalise very well 

(e.g. similar efforts in neutrino physics)
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https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
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Summary
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•Machine learning enables fully differentiable, automatically optimisable particle flow


•Precise particle flow requires high granularity calorimeters.


•Very promising performance of ML algorithms in high granularity calorimeters and 
for PF


•Pushing forward developments for particle reconstruction


•Pushing forward new machine learning approaches 



Jan Kieseler

Backup
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A look at computer vision
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•Well known from object detection in images

• Two main approaches:

‣ “Traditional’ anchor point based approaches  [1-4], …

‣ Anchor-free approaches, using each pixel [5,6, …]

T. Lin et al, arXiv:1405.0312

[1] J. Redmond et al, arXiv:1506.02640

[2] Y. Hu et al, arXiv:1803.11187

[3] R. Girshick, arXiv:1504.08083

[4] T. Lin et al, arXiv:1708.02002

[5] N. Wang et al, arXiv:1904.01355

[6] X. Zhou et al, arXiv:1904.07850 
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Anchor point based methods
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•Anchor points (M x M per image)

•Assign object score/bounding box to anchor point

•Object can be found multiple times


•Anchor points grow with with N^(dim), make implicit assumptions on object size


•Not suitable for reconstruction based on high-dimensional detector signals

Figures: towardsdatascience.com

http://towardsdatascience.com
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Key point methods
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• Identify key points of the object

•Predict object properties from key points


Problem: identify the key points

•Also predict ‘center-score’ 

•Select highest score in the area as key point

‣ Seed identification!

‣ Heavily relies on objects to have a center: problematic for a particle


•Remaining ambiguities still need to be resolved N. Wang et al, arXiv:1904.01355

X. Zhou et al, arXiv:1904.07850 
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Non maximum suppression
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•Start with highest score


•Downweight ‘close’ by objects 
using IoU (Soft NMS)


•Relies on bounding boxes


•Not easily adaptable to particles 
in detectors

N. Bodla et al, arXiv:1704.04503

Figures: towardsdatascience.com

http://towardsdatascience.com

