First ideas and developments for a LAR EM calorimeter at FCC-ee

WORKSHOP FCC-FRANCE

Ronic Chiche, Daniel Fournier, *Nicolas Morange* 21/01/2021

Laboratoire de Physique des 2 Infinis

LAr Calorimeters

- LAr Calorimeters very successful at particle physics experiments: HERA, D0, NA31, ATLAS
- Sampling calorimeters, e.g Lead/LAr for ATLAS
- Excellent linearity, stability
- EM energy resolution $\frac{10\%}{\sqrt{E}} \oplus \frac{0.25}{E} \oplus 0.3\%$
- e/γ identification through 3D shower shapes

LAr Calo for FCC-hh

- First LAr study for future colliders, thanks to intrinsic radiation hardness
- $\bullet \sim 10\times$ ATLAS granularity, for better use of PFlow techniques and pileup mitigation
- Reach same performance as ATLAS at much higher pileup levels

LAr Calo for ee machine ?

- A priori, similar concept can work very well at an e⁺e⁻ collider too
- With *ee* conditions allowing for significant optimisations
 - On noise for low energy measurements
 - On segmentation for PID/PFlow use

Reaching 10× **ATLAS** granularity

- 200000 cells \rightarrow few million cells
- Readout in ATLAS uses simple copper/kapton electrodes
- Issue: traces to route signals to front or back of electrode take space !
- For 10× more granular: go to multilayer PCB to route signals in a deep layer

Basic design

- Cannot use accordion shape for PCBs
- \Rightarrow Straight planes inclined around the barrel
 - Simulation in a specific IDEA-LAr setup

Design of ATLAS electrodes

Physics performance

- Simulation and integration into FCC software (CERN, Prague)
- Electroweak physics performance vs detector geometry, choice of absorber (Edinburgh)
- Tau physics studies and π^0/γ identification (Copenhagen)

Necessary R&D

Some items can be blockers to be able to build such a calorimeter

- Thin cryostats: R&D ongoing at CERN
- High density feedthrough: R&D ongoing at CERN
- Cold electronics
- PCB electrodes (CERN and IJCLab)

BARREL ECAL GEOMETRY

- Enveloppe from IDEA tracker
- Aim for 20–22 X⁰
- Initial proposal: 1536 electrodes around ϕ
 - 2 mm Pb absorber, 1.2 mm PCB, 2 \times 1.24 mm LAr. Sampling fraction \sim 20%
 - Angle 50°
- Segmentation in θ : $\Delta \theta \sim 0.56^{\circ}$
- 12 segments in depth, first one without any Pb (presampler)
 - Length adjusted for constant depth along radial direction
- All parameters still subject to optimisation

Longitudinal vew (without 'strips' for 2nd segment) N. Morange (IJCLab)

Tilted planes around cylinder: non-trivial geometry !

- Developed Matlab calculations of the geometry
- Allows to study crossings of electrodes by particles at all positions
 - 41.5 electrodes on the path

Drawbacks of initial proposal Segments along the electrode have equal length

- They are not seen under the same angle $\delta\phi$
- Cell boundaries are not aligned
- More material (X⁰) in the front cells than in the back ones

Proposed solution

 Calculated relation between length on electrode and number of electrodes crossed before reaching that point:

$$L_m = rac{r_i}{\sin(lpha) \cot an \left(\Delta k_m rac{2\pi}{N_e}
ight) - \cos(lpha)}$$

- New proposal: 10+1 segments, exactly 4 electrodes crossings / segment
- Cell boundaries well aligned
- Can have exactly 2 electrodes crossings in presampler if depth increased by 6 mm or angle of electrodes 50.4°

$\Delta r_m(cm)$	$r_m(cm)$		$L_m(cm)$	$\Delta L_m(cm)$
+4.8	256		56,5	+6.4
14,0	251,2		50,1	
+4,6	246,6		44	+6,1
+4,3	242.3		29.1	+5,9
+4,1	242,5		56,1	+5,7
+3.9	238,1		32,4	+5,5
	234,2	-	26,9	
+3,7	230,4		21,6	+0,0
+3,6	226,9		16.4	+5,2
+3,4	223.5		11.4	+5
+3,2	223,5		11,4	+4,9
.2.1	220,2	+	6,5	+4.7
+5,1	217,1		1,8	
+1,1	216		0	+1,8

- New proposal allows for nice formation of calorimeter cells by grouping electrodes together in φ
- First idea: grouping by 4
 - Largest cell: $L \times H \sim 4.2 \times 4.8$ cm
 - Presampler cell:
 - $L \times H \sim 3.5 \times 1.5 \,\mathrm{cm}$
 - 4608 cells / slice in θ
- Grouping by 2 can be easily studied in simulation

Principle

- HV layer capacitively coupled to readout layer
- Signal transferred from both sides to readout trace through a via
- Shielding traces reduce cross-talk from other segments

Questions to answer

- What is the detector capacitance ?
 - Presumably quite a bit smaller than in ATLAS: O(10 - 100) pF
- What are the properties of the transmission line ?
- What is the level of cross-talk ?
- What is the maximum density of signal traces can we get ?
- Can we readout all cells at the back, or do we have to route the first segments to the front ? (as in ATLAS)

EQUIVALENT MODEL

A nightmare of capacitances

- Capa of interest (detector capacitance): H_{VA}
- But all the rest matters
- As well as R+L of all traces

- Analytical models can give a rough idea of some of the parameters for a cell in isolation
- To go to more realistic setups, need finite elements tools
 - COMSOL multiphysics
 - Need to be cross-checked against the analytical models on simple setups first
 - Finding the appropriate meshing for calculation requires time and expertise
- Building simple PCB prototypes will be extremely valuable to validate the simulations

Name	Туре	Model	W (mm)	S/H (mm)	L (mm)	e,	C (pF)
C _{HV-A}	microstrip	Wheeler	24	2,1	120	1,6+4	80,8
C _{HV-N}	coplanar	Xiang	24	1	120	1,6+4	10,5
C _{HV-HV}	coplanar	Xiang	120	1	24	1,6+4	2,77
C _{HV-G}	?						
C _{HV-P}	parallel	Xiang	23	0,1	120	4	0,0185
C _{P-N}	coplanar	Xiang	23	2	120	4	12,9
C _{p.p}	coplanar	Xiang	120	1	23	4	3,8
C _{P-G}	microstrip	Wheeler	0,25	0,285	120	4	13
C _{W-G}	?						
C _{T-G}	strip line	Wheeler	0,127	0,170	120	4	13,7
C _{T-T}	coplanar	Xiang	0,127	2,27	120	4	2,9

From ATLAS to an optimised electronics for ee collider

- ATLAS: noise term \sim 250 MeV for e^- cluster
- Use charge collection preamp instead of current-sensitive preamp
- Use much larger integration time: $O(1 \mu s)$ vs 45 ns
 - More charge collection \rightarrow more signal
- Dominant noise term goes as $C\sqrt{4kT/(g_m\tau_p)}$
- In addition, possibility to use cold electronics
 - Would also simplify design of feedthroughs

Estimation

- With 20% sampling fraction, collected charge for 1 MeV deposited \sim 3200 e^-
- Use noise figure from cold PA designed by BNL for Dune¹: RMS $1000e^{-1}$ for C = 200 pF
- \Rightarrow 300 keV noise for a 200 pF cell

Consequences

- dEdx from muons O(10) MeV/cell
- \Rightarrow Observe MIPs with S/N > 5
- Noise for an electron cluster < 10 MeV (if coherent \ll incoherent noise)
- \Rightarrow Sampling term dominant for energy resolution even at low energies

¹G. De Geronimo et al., Front-end asic for a liquid argon TPC, IEEE Transactions on Nuclear Science 58 (2011) 1376–1385

Project of LAr calo for FCC-ee still in early stages

- Many open questions, even basic ones
 - Constant or variable absorber thickness ?
 - What design for the endcaps ?
- Physics performance evaluation for design optimisation and R&D for critical items in the design need to go in parallel
 - IJCLab working so far on electrodes design and calculations

Making a LAr calo design for FCC-ee is a high-tech project !

- Some of the building blocks require exploring new technologies
 - Thin cryostat, cold integrated electronics

It has the potential to be a versatile calorimeter for FCC-ee

- Excellent EM resolution, including at low energy ($< 10\%/\sqrt{E}$ + low noise)
- Fine granularity for PID and for PFlow
- Invariant in ϕ rotations, without any crack
- Pointing cells in both ϕ and θ

Community around the project

- Small team, which very much welcomes newcomers !
- More involvement of French institutes would be much appreciated !

BONUS SLIDES

N. Morange(IJCLab)

IDEA CONCEPT

