Perspective for High Precision QCD Studies (a) FCCee (selected appetizers)

Bogdan MALAESCU

LPNHE, CNRS

- See also talk by David d'Enterria " $\underline{\alpha}_{S}$ <u>@ FCC-ee</u>" @ FCC France 2020 $\rightarrow \alpha_{S}$ extractions from hadronic decays of τ , Z, W; event shapes; jet rates etc.
- Snowmass studies (LoIs):

"Perspectives for high-precision $\alpha_{s}(m_{z}^{2})$ determinations at FCC-ee" "High-precision $\alpha_{s}(m_{z}^{2})$ determinations from e +e- \rightarrow hadrons below Z peak"

20/01/2021

Comparison of LHC / FCCee "environments"

Pile-up

@ FCCee:

- → Short distance interaction of virtual bosons with quarks
- \rightarrow No PDFs
- \rightarrow No underlying event & MPI
- \rightarrow No pile-up

α_{s} evaluation from *hadronic* τ *decays* (1/3)

 $\rightarrow \tau$ hadronic spectral functions (SFs) from ALEPH, unfolded of detector effects

α_{s} evaluation from *hadronic* τ *decays* (2/3)

 $\rightarrow \tau$ hadronic spectral functions ($\pi\pi^0$ channel) from various experiments

 \rightarrow Normalisation from branching fractions best determined by ALEPH (large boost)

 \rightarrow Shape best determined by Belle (high statistics); improvements @ Belle II

→ What precision can one achieve at FCCee? Need to study acceptance, reconstruction efficiency, resolution etc. in view of optimizing the detector design for SFs measurements

α_{s} evaluation from *hadronic* τ *decays* (3/3)

→ Theoretical prediction available at N³LO: need for even higher precision at the time of FCCee to reduce dominant uncertainty from perturbative series (CIPT/FOPT), to benefit from the statistical precision ($\delta \alpha_s / \alpha_s << 1\%$)

→ More precise SFs will allow to better pin down non-perturbative corrections and probe the structure of the QCD vacuum (condensates)

See also: arXiv:2012.07099 (A. Pich: "Challenges for tau physics at the TeraZ")

α_{s} evaluation from *hadronic Z decays*

- \rightarrow Theoretical prediction available at N³LO
- \rightarrow Better convergence of the perturbative series and less non-perturbative corrections compared to precise determinations at lower scales (e.g. from τ decays)

→ Need to study acceptance and reconstruction efficiency etc. in view of optimizing the detector design

α_{s} evaluation from (ISR) jet production

 \rightarrow Sensitivity to α_s e.g. from 3/2 jet ratios (OR jet rates w.r.t. total hadronic Xsec)

- → High luminosity allows to select large samples of events with collinear / large angle ISR photons: allows to scan √s' with the same detector and collider conditions important for RGE test
- → Need to study jet and photon energy calibration and resolution, acceptance and reconstruction efficiency etc. in view of optimizing the detector design Should be able to target $\delta \alpha_{s} / \alpha_{s} < 1\%$ M2 internship (+ PhD) starting @ LPHNE (Supervisors: Luc Poggioli & BM)

7

Jet substructure opportunities

→ Numerous algorithms/methods developed for studying into detail the jet substructure in the LHC environment:

Important for understanding QCD effects inside jets, jet tagging (e.g. boosted top, $H\rightarrow bb$), New Physics searches

- \rightarrow Huge potential for doing precision studies of jet substructure in the clean FCCee environment
- → Need to *perform detector optimization* in terms of granularity, energy resolution, (tracking/calorimeter) acceptance

Ultimate goal: test RGE & unification of couplings

- \rightarrow A deviation from the SM prediction for the RGE can be an indication of New Physics
- \rightarrow Are the coupling constants unified at the Plank scale?
- \rightarrow Need to evaluate the strong coupling at multiple scales, with high precision
- \rightarrow Lots of possibilities to collaborate

