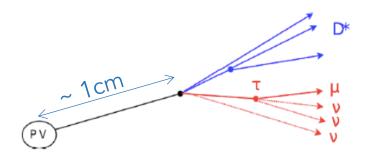

Introduction to the Heavy Flavour session: the lanscape

Marie-Hélène Schune

BFactories (Belle-II)

Beam energy const. + tag-side → kinematical constraints

Inclusive decays

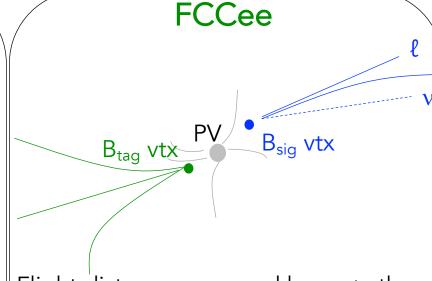

Access to absolute BR

BaBar & Belle ~ 1.1 ab-1

Belle-II (ICHEP2020 schedule) : 10 ab⁻¹ in 2025, 50 ab⁻¹ in 2031

Belle-III ? (250 ab⁻¹) triggerless

LHCb


Very large boost→ flight distance reconstruction
→ kinematical constraints

All b-hadrons species

No access to absolute BR

LHCb: 9fb-1 at hand

LHCb-Upgrade 1 (soft. trigger): at the end of Run3 (2024): 23 fb⁻¹ at the end of 2020s: 50 fb⁻¹ LHCb-Upgrade 2: 300 fb⁻¹

Flight distance reco. and beam+other hemisphere

→ kinematical constraints

All b-hadrons species

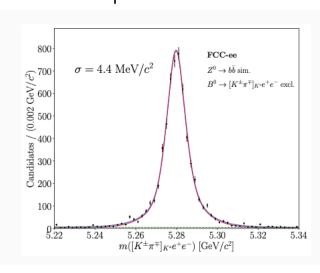
Access to absolute BR

FCCee (from late 2030)

5 10¹² Z⁰

1.5 108 WW

triggerless


With 300 fb-1 of data at LHCb and Belle-II (III ?) a lot will be already known on Flavour Physics

- →For FCCee to play a significant role, the detector should be tailored to Flavour Physics
 - → Powerful PID (Pi/K/p e and mu) over a large momentum range
 - \rightarrow neutral reconstruction (Pi0, γ)
 - → excellent vertex reconstruction
 - → excellent mass resolution
 - → excellent jet flavour tagging
 - → hermeticity (many-body decays, use of the other hemisphere on top of beam E constraints)
 - → .. and a light detector (Bremstrahlung, conversions)
- → We should identify exemplary key channels, also from a physics point of view

All charged tracks modes with leptons (e/ μ):

- (very) Rare modes with muons: LHCb will have done the most of the job
- (very) Rare modes with electrons :

Donal presentation:

IDEA detector, no brem emission

LHCb σ = 75 MeV/ c^2

Belle $\sigma = 5 \text{ MeV}/c^2$ [arXiv: 1904.02440]

to be implemented in order to study decays involving electrons

IDEA detector is expected to be light ... (still)

 σ (K* $\mu\mu$) ~ 20 MeV for LHCb [arXiv:1112.3515]

This is a place where FCCee may play a very important role

Donal's presentation in Nov 2020 at CERN

Physics analyses involving Flavour tagging:

LHCb ~ 6% (now) FCCee could reach 20%-25%?

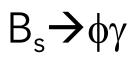
Bs

±0.35

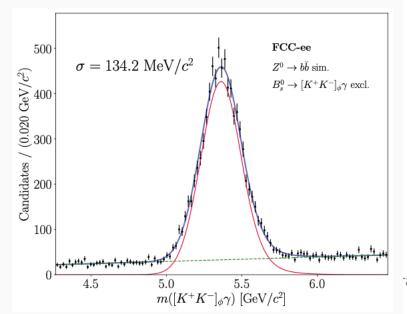
γ[°]

arXiv:1808.08865

±5.4	±49	LHCb
		Current
±1.5 ±1.5	±14	Belle II ATLAS/CMS LHCb
		2025


±22

 ϕ_s [mrad]

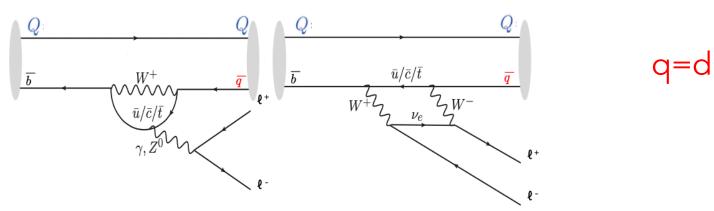

JPsi Phi

$$\delta(\gamma) \lesssim 0.4^{\circ}~(stat.),~~\delta(\beta_S) \lesssim 3.4^{\circ} \times 10^{-2}(stat.)$$
 achievable .6 mrad

Roy Aleksan

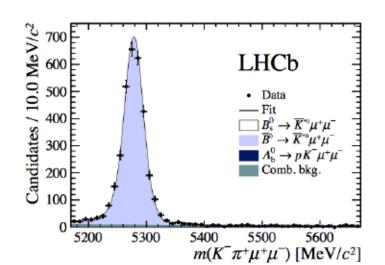
DsK

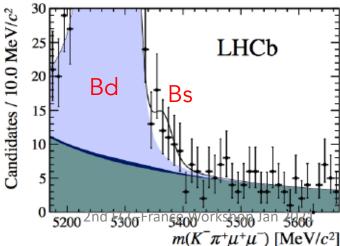
LHCb: 100 MeV


Once tagging taken into account similar effective power?

rance Workshop Jan 2021

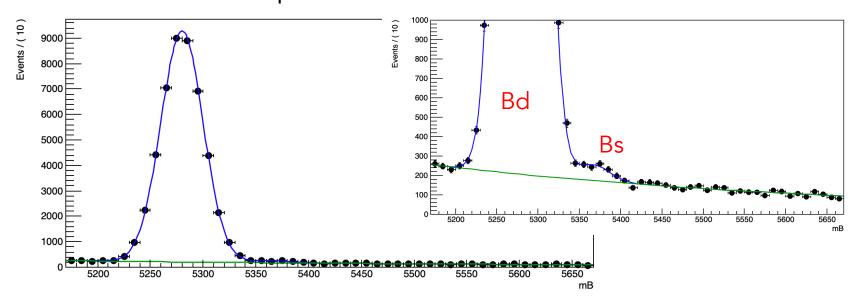
5

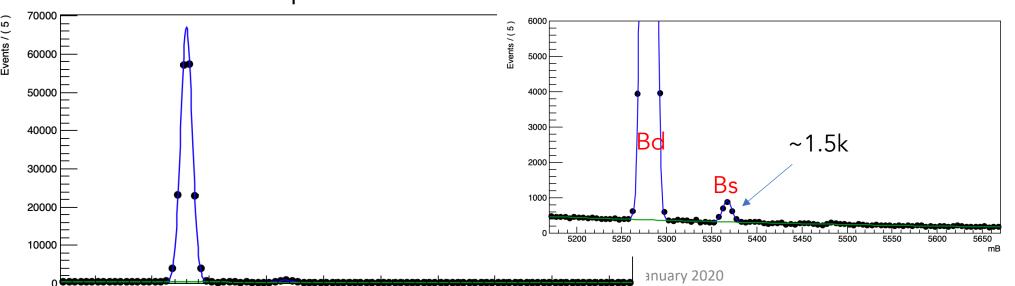

HL-LHC


A unique access to b > dll transitions?

The equivalent of B0-> K*II is B0-> ρ II ... Background , not self-tagging.

$${\cal B}(B_s^0\to \overline{K}^*\mu^+\mu^-) = (3.0\,\pm 1.0 ({\rm stat})\,\pm 0.2 ({\rm syst})\,\pm 0.3 ({\rm ext}))\times 10^{-8}$$




2011-2016

arXiv:1804.07167

Idealized and simplified LHCb situation with 50 fb⁻¹

Idealized and simplified FCCee situation

150 10^9 B_s BR ~ 10^{-8} \rightarrow 1.5k B_s?

Let's go!

	Introduction to the Heavy-Flavor/QCD session (15'+5') Video only	Marie-Hélène Schune 16:15 - 16:35
	First steps with flavour physics studies at FCC-ee using FCCSW (15'+5') Video only	Donal Hill 16:35 - 16:55
17:00	First look at Bc> tau nu @ FCC-ee (15+5') Video only	Yasmine Amhis 16:55 - 17:15
	Flavour physics case studies (with related activities in Clermont) (15'+5') Video only	Stephane Monteil 17:15 - 17:35
	Study of Bs -> Ds K at FCC-ee and constraints on detector (15'+5') Video only	Roy Aleksan 17:35 - 17:55
18:00	Perspectives for high-precision aS(m2Z) determinations at FCC-ee (15'+5') Video only	Bogdan MALAESCU 17:55 - 18:15