

FCCIS – **The Future Circular Collider Innovation Study**. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

DE LA RECHERCHE À L'INDUSTRIE

Optics studies for the FCC-ee Booster ring: status and plan

Janvier 2021

A. Chance¹, <u>B. Dalena</u>¹, B. Haerer² and H. de Grandsaignes¹ (Phd student) (¹CEA, ²KIT)

Injection Parameters (as in CDR)

	FCC	-ee Z	FCC	C-ee W	FCC	-ее Н	FCC	C-ee tt
Energy (GeV)	45.6		80		120		182.5	
Type of filling	Full Top-up Full Top		Top-up	Full	Top-up	Full	Top-up	
LINAC # bunches, 2.8 GHz RF	2 2		1		1			
LINAC repetition rate (Hz)	2	00	1	00	100		100	
LINAC/PBR bunch popul. (10^{10})	2.13	1.06	1.88	0.56	1.88	0.56	1.38	0.83
# of LINAC injections	10)40	40 1000		393		50	
PBR bunch spacing (ns)	2	.5	22.5		57.5		450	
# PBR cycles	8 1		1		1			
PBR # of bunches	2080 2000		000	393		50		
PBR cycle time (s)	6.3 11.1		1.1	4.33		0.9		
PBR duty factor	0.	84	0.56		0.35		0.08	
BR # of bunches	16	640	2000		393			50
BR cycle time (s)	51	.74	13.3		7.53		5.6	
# BR cycles	10	1	10	1	10	1	20	1
# injections/collider bucket	10	1	10	1	10	1	20	1
Total number of bunches	16640		2000		393		50	
Filling time (both species) (s)	1034.8	103.5	288	28.8	150.6	15.6	224	11.2
Injected bunch population (10^{10})	2.13	1.06	1.44	1.44	1.13	1.13	2.00	2.00

Total filling time of collider < 20 min

Continuous top-up injection into the collider (Beamstrahlung and radiative Bhabha losses) Charge variation bunch to bunch < few %

Injection energy into the booster **20 GeV** (or 16 GeV)

Ramping similar to SPS: 80 GeV / s

Alternative: replace Linac + Pre Booster Ring with a **Linac**

3 FCC-France workshop

Layout constraints

High Energy Booster follows the FCC-hh footprint

Main Collider has a transverse offset of 1 m (alternative with collider that follows FCC-hh footprint and booster on top of it)

Booster bypass the FCC-ee detectors on the internal side of the cavern (following FCC-hh layout)

Barbara Dalena FCC-France workshop

Booster arc cells

FUTURE CIRCULAR COLLIDER

- FODO cells of 54 m
- Made of 4 dipole, 2 quadrupoles and 4 sextupoles
- Including space for correctors, flanges and interconnections

Magnet type	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	Т	0.006
	Field at peak energy (182.5 GeV)	Т	0.058
	Magnet length	m	11.1
Quadrupole	Max gradient at injection (20 GeV)	T/m	2.6
	Max gradient at peak energy (182.5 GeV)	T/m	23.7
	Magnet length	m	1.5
Sextupole	Max strength at injection (20 GeV)	$T m^{-2}$	161
	Max strength at peak energy (182.5 GeV)	$\mathrm{T}\mathrm{m}^{-2}$	1467
	Magnet length	m	0.5

- ⇒ Very challenging **low** dipole field
- Booster Equilibrium rms emittance ≤ collider

Beam Energy [GeV]	Eq. Emittance [nm rad] 60°/60°	Eq. Emittance [nm rad] 90°/90°	Eq. Emittance Collider [nm rad]
45.6 (Z)	0.235	0078	0.24
80 (W)	0.729	0.242	0.84
120 (H)	4.229	0.545	0.63
175 (tt)	3.540	1.172	1.48

- \Rightarrow 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- \Rightarrow 90°/90° required for H and ttbar operation

Barbara Dalena

(m)

Sextupole schemes, working point and DA

Different schemes have been studied

- ⇒ best cancellation of geometric aberrations given by **non-interleaved sextupoles scheme**
- ⇒ need for less sextupoles

Fractional working point chosen .225/.29, based on Diffusion Rate given by frequency map analysis

⇒ It can be **further optimized**, also accounting for collective effects

Dynamic and **momentum aperture**, with quadrupole displacements, look OK

⇒ impact of wigglers to be studied

Insertions regions

- Short straight sections of 1.4 km (PL,PA,PB,PH,PG,PF) are made of FODO cells of 56 m.
 - **Injection** to and **extraction** from the Booster probably located in sections **PL** and **PB**
- \Rightarrow to be designed
- **RF cavities** are located in sections **PJ** and **PD**, as in the collider, but they are staggered because of CM size

- Wigglers are located in sections PJ and PD with RF cavities:
- ⇒ good for fast beam energy recovery
- ⇒ protection of the cavities from the wigglers' radiation to be investigated

	Z	W	Н	$ttbar_1$	$ttbar_2$
Total RF voltage (MV)	140	750	2000	9500	10930
frequency (MHz)			400)	
RF voltage (MV)	140	750	2000	2000	2000
$E_{\rm acc}$ (MV/m)	8.0	9.6	9.8	10.0	10.0
# CM	3	13	34	34	34
# cavities	12	52	136	136	136
# cells/cav.	4	4	4	4	4
frequency (MHz)			800)	
RF voltage (MV)				7500	8930
$E_{\rm acc}$ (MV/m)				20	19.8
# CM				100	120
# cavities				400	480
# cells/cav.				5	5

Damping Wigglers

Target damping time 0.1 s (to fulfill cycle time) Wigglers reduce damping time and increase eq. emittance:

$$au_{\chi} \propto \frac{1}{E^4 I_2}$$

$$\varepsilon_{eq} = \frac{C_q \gamma^2 I_5}{\left(I_2 \left(1 - \frac{I_4}{I_2}\right)\right)}$$

$$I_2 = \oint \frac{ds}{\rho^2} \qquad I_5 = \oint \frac{H_x}{|\rho^3|} ds$$

They mitigate IBS and MI too

A normal conducting wigglers foreseen

⇒ can be further optimized for poles length and for number of poles

It should be switched off during acceleration

⇒ **Eddy current** effect to be investigated

Total length of installed wigglers is of the > **100 m** in the **same straight line**

⇒ Possible stimulated **additional radiation** and **instability** (like in FEL) to be studied

Beam energy (GeV)	Eq. emittance (nm rad) 60°/60° optics	Eq. emittance (nm rad) 90°/90° optics	Transv. damping time (s)
20.0	0.045	0.015	10.054
45.6	0.235	0.078	0.854
80.0	0.729	0.242	0.157
120.0	4.229	0.545	0.047
175.0	3.540	1.172	0.015

Pole length	0.095 m
Pole separation	$0.020\mathrm{m}$
Gap	$0.050 \mathrm{m}$
Number of poles	79
Wiggler length	$9.065\mathrm{m}$
Magnetic field	1.45 T
Energy loss per turn	126 MeV
Hor. damping time	104 ms
Hor. emittance (60° optics)	300 pm rad

Alternative optics (proposed by Antoine Chance)

2 dipole families with two different curvatures, proposed for the electron-ion collider (EIC)

Damping time can be reduced by playing on the ratio between the two different fields.

Advantages:

- No impact on the layout
- No need of damping wigglers
- Higher dipole field at injection energy

Drawbacks:

- Different orbit at different energies \Rightarrow reduction of beam stay clear?
- More synchrotron radiation and in opposite **direction** of foreseen absorber (at injection)
 - ⇒ vacuum quality to be investigated

Summary HEB status (thanks to Bastian Haerer)

- **Two optics** for the 4 operational scenarios:
 - 60°/60° for the Z and W
 - 90°/90° for the H and ttbar
- Non interleaved sextupole scheme retained as baseline
 - Best cancellation of geometric aberrations
 - Less sextupoles required
- Working point chosen .225/.29
 - Allows for large DA and momentum aperture
- Wigglers are needed to reduce damping time at injection and mitigate IBS and MI
 - First design exists
- A staging RF scenario with staggered cryomodules, with respect to collider, has been worked out

20 Janvier 2021 Barbara Dalena FCC-France workshop 10

Next steps

- **Consolidate booster layout** and **correction schemes** accordingly to the changes on FCC-hh and FCC-ee collider
- Re-optimisation of working point
 - taking into account also collective effects
- **Re-optimisation** of the wigglers
 - Reduce equilibrium emittance at Z
 - Fast ramping down (Eddy current) at higher energies
 - Check possible excitation of stimulated synchrotron radiation and beam instability (due to installation on straight line)
- **Protection of RF cavities from wigglers radiation**
 - Placed in the same insertions
- Injection extraction lines to be done
- Design and study an alternative optics, based on the EIC 2 dipoles family scheme
 - Compare it with the solution with wigglers

20 Janvier 2021 11

DE LA RECHERCHE À L'INDUSTRIE