Future lepton collider prospects for a composite pseudo-scalar

Lara Mason UJ - UCBL (IP2I)

Based on recent work

in collaboration with Alan Cornell, Aldo Deandrea, Benjamin Fuks

FCC-ee meeting

21 January 2021

Composite Higgs models at future colliders

- Composite Higgs models: new strong sector confining at low energies
- Higgs is a bound state of fermions
- Will be accompanied by light bound states
- First hints of compositeness?
- 'Factories' at new colliders can be used in targeted low mass searches

The FCC-ee may open the door to compositeness

In this talk

"Future lepton collider prospects for a ubiquitous composite pseudo-scalar" in Physical Review D (10.1103/PhysRevD.102.035030) (2004.09825)

• Composite Higgs models predict the existence of a light pseudo-scalar

A (brief) theory motivation

- *a*, produced in association with the Higgs
- Possibilities for global symmetries and gauge groups are broad: we will define 12 models (fundamental fermions)

- Targeted low mass search for BSM physics:
- Consider $m_a \in [10,60]$ GeV: deficiency of (LHC) searches thus far
- Possible search avenue at lepton colliders (FCC-ee) with low c.m. + high integrated luminosity = possibility for detection of weakly interacting particles
- Z pole c.m. energy + 150 ab^{-1}
- Cut and count vs machine learning using boosted decision trees

Analysis outline

A. A theoretical motivation

B. Building an analysis

- Cut and count
- Machine learning

Theoretical background

- A given model has a hypercolour gauge group (unbroken), and ψ, χ in two different irreps of the hypercolour group
- Global (flavour) symmetries of ψ, χ are broken on the order of 1 TeV
- Also broken (by the same mechanism) is a

ubiquitous non-anomalous U(1) symmetry

This talk: pseudo-scalar a which is always present in

models of this nature

A U(1) pseudo-scalar emerges

The non-anomalous U(1) charge:

- Acts on both ψ, χ
- Broken by (at least) the chiral condensate in the EW (Higgs) sector of the theory
- Results in a light pNGB
- Need to make choices about the rest of group structure
- We will employ a set of 12 models (M1-M12) spanning a variety of HC and flavour groups
 Varying group structures + HC: confining gauge interactions
 Coefficients determined, minimal set of fields
 Most minimal cosets: SU(4)/Sp(4), SU(5)/SO(5), SU(4) × SU(4)/SU(4)

M1-M12 First proposed 1312.5330/1610.06591

Ingredients: HC group, choice of fermion representations, EW coset, QCD coset (defined by flavour symmetry)

A U(1) pseudo-scalar emerges

 QCD backgrounds play a role in low mass searches at hadron colliders

G. Cacciapaglia, G. Ferretti, T. Flacke, and H. Serôdio Front. in Phys., vol. 7, p. 22, 2019.

U(1) pseudo-scalar

 $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} m_a^2 a^2 - \Sigma_f \frac{i C_f m_f}{f_a} a \bar{\Psi}_f \gamma^5 \Psi_f +$ $\frac{g_s^2 K_g}{16\pi^2 f_a} a G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \frac{g^2 K_W}{16\pi^2 f_a} a W^i_{\mu\nu} \tilde{W}^{i\mu\nu} + \frac{g'^2 K_B}{16\pi^2 f_a} a B_{\mu\nu} \tilde{B}^{\mu\nu},$

- Light: mass up to 100 GeV
- Small couplings to SM particles
- Singlet under SM symmetries
- Couples directly to SM fermion
- Lagrangian input to FeynRules to create UFO

Previous pheno by others in 1710.11142, 1902.06890, focusing on LHC searches

A. A theoretical motivation

B. Building an analysis

- Cut and count
- Machine learning

Production at lepton colliders

FCC-ee: $\tau\tau$ decay

Analysis

- Signal: $e^+e^- \rightarrow a \ \ell^+\ell^-$, $a \rightarrow \tau^+\tau^-$ (hadronic taus) Using MG5_aMC + Pythia
- Z pole: low c.m energy means fewer background processes with 150 ab⁻¹
- FCC-ee IDEA detector concept in Delphes
- Background resulting from (virtual) Z/γ events

- Following preselection, we expect about 50,000 background events and up to 40 signal events (maximal production at $M_a = 20/30$ GeV)
- Signal looks swamped by background
- In the following analysis we will proceed with cut and count, and compare with ML
- Choose a sample of models with varying group structures for illustrative purposes

Cut and count

Cut and count: missing mass

Machine learning: XGBoost

- Gradient boosting machine learning algorithm
- Classify signal or background : Logistic regression for binary classification
- Features optimised to maximise performance without being too correlated
- 1:5 test/train split
- Good handling of sparse data
- Trained by maximising *auc*, then calculated significance
- One hyperparameter choice across masses in a given model

Machine learning: XGBoost

•	We see a variation	across models,	with maximal	significance f	or M_a =	= 20 GeV
---	--------------------	----------------	--------------	----------------	------------	-----------

Model	Metric	$M_a = 10 \text{ GeV}$	$M_a = 20 \text{ GeV}$	$M_a = 30 \text{ GeV}$	$M_a = 40 \text{ GeV}$	$M_a = 50 \text{ GeV}$
M9	auc	$0.98 {\pm} 0.003$	0.87 ± 0.006	0.84 ± 0.0013	$0.94\ {\pm}0.0058$	0.95 ± 0.0066
1112	ams	0.22	2.96	2.41	0.29	0.11
М4	auc	0.98 ± 0.0045	0.95 ± 0.0029	0.87 ± 0.020	0.88 ± 0.042	$0.89 {\pm} 0.061$
1014	ams	1.16	2.83	1.69	0.54	0.15
N/7	auc	0.98 ± 0.0018	0.86 ± 0.0082	0.88 ± 0.0011	0.90 ± 0.0012	0.94 ± 0.019
1117	ams	0.22	3.20	2.58	0.27	0.14
M10	auc	$0.98 {\pm} 0.003$	0.92 ± 0.0057	$0.90{\pm}0.019$	$0.96{\pm}0.0078$	$0.96 {\pm} 0.0050$
IVI I U	ams	0.37	4.08	2.35	0.14	0.042
М19	auc	$0.98 {\pm} 0.0075$	$0.92{\pm}0.003$	$0.92{\pm}~0.013$	$0.95 {\pm} 0.0044$	0.96 ± 0.0082
10112	ams	0.066	1.26	0.98	0.11	0.046

A reminder of the cut and count significances:						
$M_a = 10 \text{ GeV}$	$M_a = 20 \text{ GeV}$	$M_a = 30 \text{ GeV}$	$M_a = 40 \text{ GeV}$	$M_a = 50 \text{ GeV}$		
0.0015	0.13	0.090	0.049	0.020		
0.0013	0.42	0.26	0.12	0.040		
0.0024	0.14	0.11	0.061	0.023		
0.0042	0.11	0.055	0.023	0.0078		
0.00061	0.047	0.035	0.021	0.017		
_	A rem $M_a = 10 \text{ GeV}$ 0.0015 0.0013 0.0024 0.0042 0.00061	A reminder of the cut $M_a = 10 \text{ GeV}$ $M_a = 20 \text{ GeV}$ 0.0015 0.13 0.0013 0.42 0.0024 0.14 0.0042 0.11 0.0061 0.047	$M_a = 10 \text{ GeV}$ $M_a = 20 \text{ GeV}$ $M_a = 30 \text{ GeV}$ 0.0015 0.13 0.090 0.0013 0.42 0.26 0.0024 0.14 0.11 0.0042 0.11 0.055 0.00061 0.047 0.035	$M_a = 10 \text{ GeV}$ $M_a = 20 \text{ GeV}$ $M_a = 30 \text{ GeV}$ $M_a = 40 \text{ GeV}$ 0.0015 0.13 0.090 0.049 0.0013 0.42 0.26 0.12 0.0024 0.14 0.11 0.061 0.0042 0.11 0.055 0.023 0.0061 0.047 0.035 0.021		

Future prospects and conclusion

What luminosities are needed?

Model	$M_a \; ({\rm GeV})$	Cut and Count		Machine Learning		
Model		2σ	3σ	2σ	3σ	
	10	$2.67{\times}10^{8}$	6.00×10^{8}	1.24×10^{4}	2.79×10^{4}	
	20	$3.55{ imes}10^4$	7.99×10^{4}	68.5	154	
Mo	30	7.41×10^4	1.67×10^{5}	103	232	
1012	40	$2.50{ imes}10^5$	5.62×10^{5}	7.13×10^{3}	1.61×10^{4}	
	50	$1.50{\times}10^6$	3.38×10^{6}	4.96×10^{4}	1.12×10^{5}	
	10	3.55×10^{8}	7.99×10^{8}	446	1.00×10^{3}	
	20	3.40×10^{3}	7.65×10^{3}	74.9	169	
MA	30	8.88×10^3	2.00×10^4	210	473	
1014	40	4.17×10^4	9.38×10^{4}	2.06×10^{3}	4.63×10^{3}	
	50	$3.75{\times}10^5$	8.44×10^5	$2.67{\times}10^4$	6.00×10^{4}	
	10	1.04×10^{8}	2.34×10^{8}	1.24×10^{4}	2.79×10^4	
	20	3.06×10^{4}	6.89×10^4	58.5	132	
M7	30	4.96×10^{4}	1.12×10^{5}	90.1	203	
1017	40	1.61×10^{5}	3.63×10^{5}	8.23×10^{3}	1.85×10^{4}	
	50	1.13×10^{6}	2.55×10^{6}	3.06×10^{4}	6.89×10^{4}	
	10	3.40×10^{7}	7.65×10^{7}	4.38×10^{3}	9.86×10^{3}	
	20	$4.96{\times}10^4$	1.12×10^{5}	36.0	81.1	
M10	30	$1.98{ imes}10^5$	4.46×10^{5}	109	244	
	40	1.13×10^{6}	2.55×10^{6}	3.06×10^4	6.89×10^4	
	50	$9.86{ imes}10^6$	2.22×10^{7}	3.40×10^{5}	7.65×10^{5}	
	10	1.61×10^{9}	3.63×10^{9}	1.38×10^{5}	3.10×10^{5}	
	20	$2.72{\times}10^5$	6.11×10^{5}	378	850	
M19	30	4.90×10^5	1.10×10^{6}	624	1.41×10^{3}	
	40	1.36×10^{6}	3.06×10^{6}	4.96×10^{4}	1.12×10^{5}	
	50	2.08×10^6	4.67×10^{6}	2.84×10^{5}	6.38×10^{5}	

- Significant gains by gradient boosting methods
- Highest and lowest masses remain out of reach
- Possibility to achieve 2σ or even 3σ for several models

Search complementary (parameter space unconstrained) to axionlike searches presented in

M. Bauer et al, Eur. Phys. J. C 79, 74 (2019). [58]

M. Bauer et al, Collider probes of axion-like particles, J. High Energy Phys. 12 (2017) 044.

And to existing diphoton searches A. Mariotti et al, Phys. Lett. B 783, 13 (2018).

- A direct search for a light composite pseudo-scalar at high integrated luminosity lepton colliders should be considered
- Could be separately optimised for the heavier configurations by considering higher c.m. energies.

Thank you

Future lepton collider prospects for a composite pseudo-scalar

Lara Mason | 21 January 2021 20

Model implementation tools

 $\begin{array}{c} {\rm FeynRules} \ \textbf{2.0- A \ complete \ toolbox \ for} \\ {\rm tree-level \ phenomenology} \end{array}$

Adam Alloul^a, Neil D. Christensen^b, Céline Degrande^{c,d}, Claude Duhr^d, Benjamin Fuks^{e,f}

MadGraph + MadEvent

Automated Tree-Level Feynman Diagram, Helicity Amplitude, and Event Generation

FeynRules for model building MG5_aMC for simulation of signal and background processes Pythia for parton showering and hadronisation Delphes (+ FastJet) for detector response

Analysis:

MadAnalysis: cut and count

XGBoost: machine learning

Models

- We have ψ, χ in two different irreps of the hypercolour group
- Minimal set of fields
- M1-M12 including partial compositeness for the top •
- Varying group structures + HC: confining gauge interactions ullet
- **Coefficients determined** ullet

First proposed 1312.5330/1610.06591

Ingredients: HC group, choice of					
fermion representations,					
EW coset, QCD coset					

	G_{HC}	EW and QCD coset	ψ	χ	q_χ/q_ψ
M1	SO(7)	$SU(5) \searrow SU(6)$	5× F	6× S n	-5/6
M2	SO(9)	$SO(5) \wedge SO(6)$	0/1	0~0₽	-5/12
M3	SO(7)	$\underline{SU(5)}$ \swarrow $\underline{SU(6)}$	5× Sn	$6 \times \mathbf{F}$	-5/6
M4	SO(9)	$\overline{SO(5)}$ \land $\overline{SO(6)}$	avph	0/1	-5/3
M5	Sp(4)	$\frac{SU(5)}{SO(5)} \times \frac{SU(6)}{SO(6)}$	$5 imes \mathbf{A}_2$	$6{ imes}{f F}$	-5/3
M6	SU(4)	$SU(5) \searrow SU(3)^2$	$5 imes \mathbf{A}_2$	$3{ imes}({f F},\overline{{f F}})$	-5/3
M7	SO(10)	$\overline{SO(5)}$ \times $\overline{SU(3)}$	$5{ imes}{f F}$	$3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	-5/12
M8	Sp(4)	$\frac{SU(4)}{4}$ \times $\frac{SU(6)}{4}$	$4 \times \mathbf{F}_2$	$6 imes \mathbf{A}_2$	-1/3
M9	SO(11)	$\overline{Sp(4)} \wedge \overline{SO(6)}$	$4{ imes}\mathbf{Sp}$	$6 \times \mathbf{F},$	-8/3
M10	SO(10)	$SU(4)^2 \searrow SU(6)$	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	$6{ imes}{f F}$	-8/3
M11	SU(4)	$\overline{SU(4)}$ × $\overline{SO(6)}$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	-2/3
M12	SU(5)	$\frac{SU(4)^2}{SU(4)} \times \frac{SU(3)^2}{SU(3)}$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	-4/9

A U(1) pseudo-scalar emerges

We will always have singlet pseudo-scalars associated to global U(1) symmetries, (and a coloured octet arising from the presence of coloured underlying fermions)

$$a, \eta', \pi_8$$

 a, η' undergo non-trivial mixing. In the decoupling limit,

 $\sin \alpha_{dec} = -\frac{1}{\sqrt{1 + \frac{q_{\psi}^2 N_{\psi} f_{\psi}^2}{q_{\chi}^2 N_{\chi} f_{\chi}^2}}}$

The pNGB \tilde{a} is naturally **lighter** than the typical confinement scale, and the orthogonal $\tilde{\eta}$ is heavier

 ψ condensing: the axial $U(1)_{\psi}$ would be spontaneously broken, but also explicitly broken by a ABJ anomaly

 \implies heavy Goldstone.

Also have χ fermions condensing \implies additional axial $U(1)_{\chi}$ spontaneously broken.

Possible to construct an ABJ anomaly free linear combination $U(1)_a$: associated pseudo-scalar will be light

Machine learning

- Remember the matrix of objects we got from our detector
- The simple cuts in variables weren't enough
- What if we can build an algorithm to differentiate the signal from background?

Decision trees

- We want to train our tree so that at each node
- we split our data in a sensible way.
- Once the tree is trained, a given object will traverse the tree until it hits a leaf and is classified.

Picture credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

While decision trees are interpretable, they are often not very powerful and can be unstable. A more advanced class of algorithms, ensembles, build on this idea..