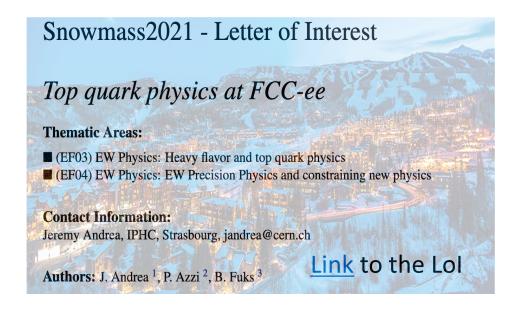




1

# $t\bar{t}$ generation at FCCee

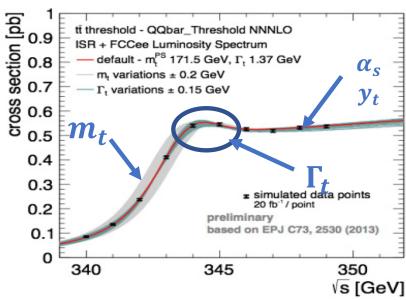

Jeremy Andrea (IPHC, Strasbourg)



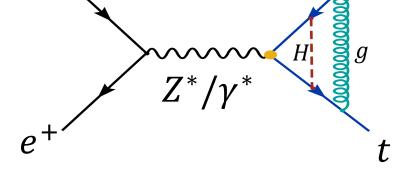
## Introduction



- Preparation of physics case studies (for Snowmass and beyond).
- Couple of presentations at Snowmass WG EF03 (<u>link</u>), and EF04 (<u>link</u>).
- Top@FCCee : growing community (collaboration with Copenhagen), but still critically lacking contributors.
- Environment that facilitates inclusion of new contributors :
  - Generation, analysis framework, object selection, events reconstructions etc.
  - Providing required tools for new comers.




- Past few months, focused on events generation, but other topics above can (and should) progress in parallel.
- In this presentation, some MC generators tested and compared. No final recipe !


# Top quark physic at *e*<sup>+</sup>*e*<sup>-</sup> colliders (in a nutshell)



- Physics program at lepton colliders <=> precision !
  - Low background,
  - excellent knowledge of the initial state,
  - detectors with very high precision.
- $t\bar{t}$  (differential) cross sections sensitive to :
  - top quark mass  $m_t$ , top quark width  $\Gamma_t$ ,
  - Couplings to Z ( $t\bar{t}Z$ ) and ( $t\bar{t}\gamma$ ) couplings Higgs ( $t\bar{t}H$ ),  $y_t$
  - On  $\alpha$  and  $\alpha_s$ .



#### CDR FCCee



- Top quark physics at  $t\bar{t}$  threshold ( $\sqrt{s}$  scan) :
  - measurements of mass and width, from event yields,
  - precision depends on the prediction of the theoretical function,
  - event yields => acceptance corrections depend on MC generator.

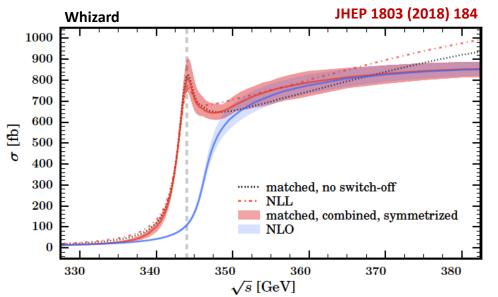
#### • Top quark physics above $t\bar{t}$ threshold.

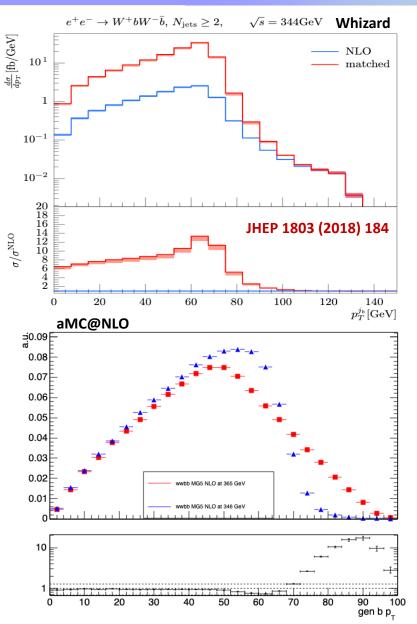
- measurements of  $y_t$ , top EWK couplings and searches for new physics,
- signal modelling relies on MC simulation.



- Precise signal modelling is one of the keys to precision.
  - what is the effect of  $\sqrt{s}$  on  $t\bar{t}$  kinematics at threshold ?
  - cross section enhancement => impact on kinematics ?
  - generator systematics, dominate in several top analyses.



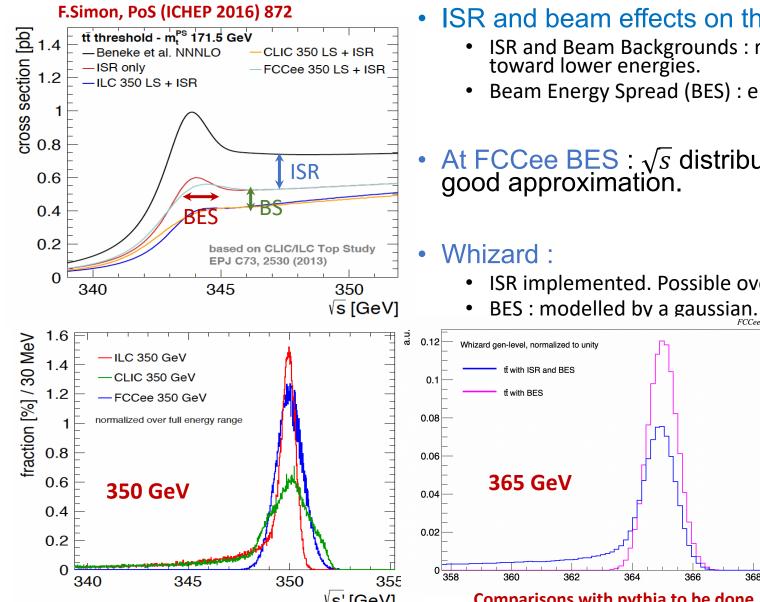

### Generators : aMC@NLO and Whizard



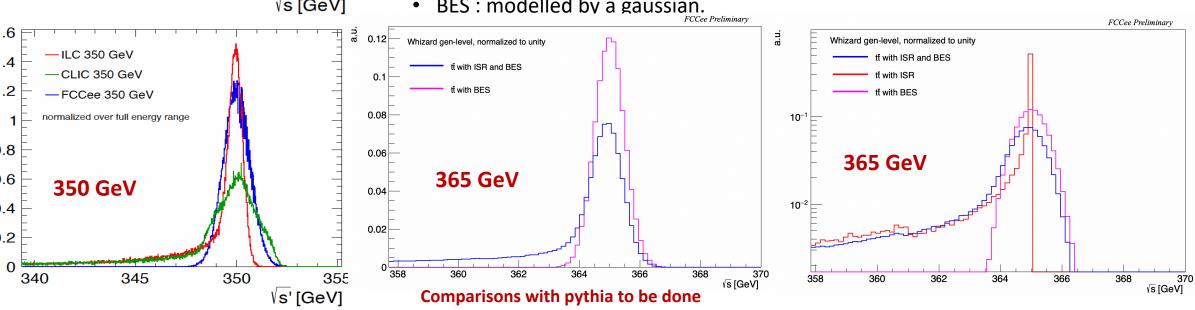



- maximum possible accuracy : NLO QCD+QED,
- NLL+NLO matching ? Differential cross sections at threshold, effects of  $\sqrt{s}$  on kinematics?
- accounts for beam effects (discussed later),
- at least 2 generators to perform comparisons,
- two generators investigated here : Whizard and aMC@NLO.
- Both generators cover most of the required features (in a not-yet public release for aMC@NLO link):
  - NLO accuracy, Whizard : QCD , MadGraph : QCD (QED under developments),
  - Initial State Radiation (ISR), both,
  - Beamstrahlung : **Whizard** : interface with GuineaPig/CIRCE. **MadGraph** : parametrization fitted to GuineaPig++.
  - Beam Energy Spread : Whizard : Gaussian smearing in case of FCCee, Madgraph : not available yet.







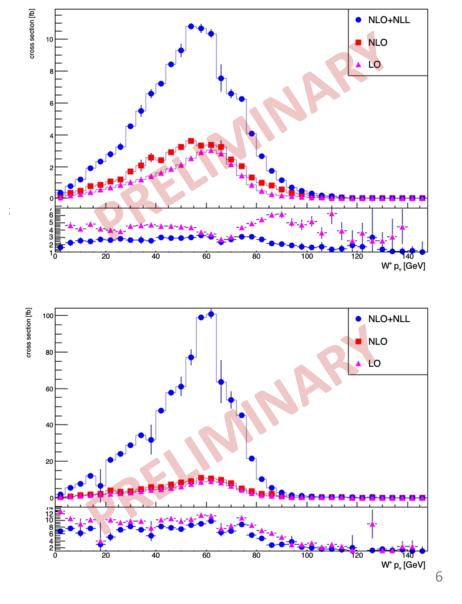

#### **Beam effects/ISR**

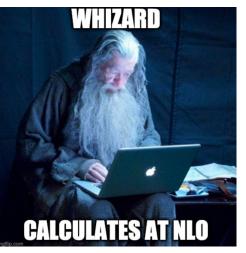


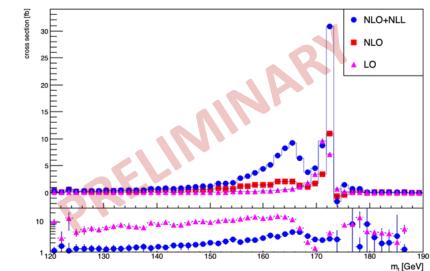


- ISR and beam effects on the threshold measurement :
  - ISR and Beam Backgrounds : reduce the energy in the  $e^+e^-$  centre of mass => tails toward lower energies.
  - Beam Energy Spread (BES) : enlarges the  $\sqrt{s}$  distribution. BES ~0.19% per beam.
  - At FCCee BES :  $\sqrt{s}$  distribution symmetric and gaussian with very good approximation.
    - ISR implemented. Possible overlap with PS (pythia) to be understood.







### Whizard at *t*t threshold

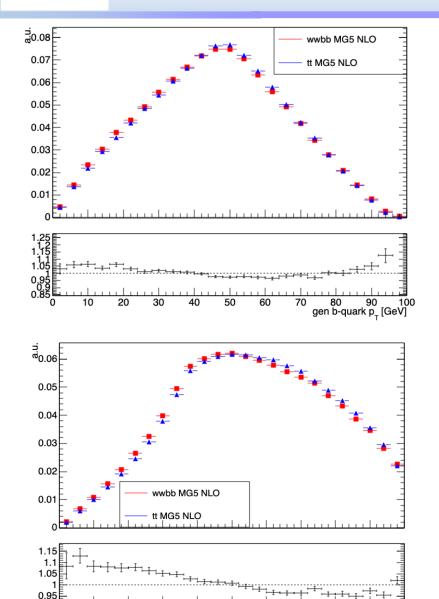



√s=340 GeV

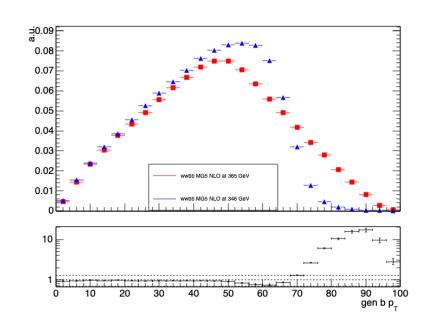
- Calculation of  $t\bar{t}$  (WWb $\bar{b}$ ) (differential) cross sections at threshold.
  - NLO calculation performed with the SM model,
  - fixed order calculation : can not be used "as is" for event based analyses,
  - still gives precious information about changes of kinematics at threshold peak.
- Close collaboration with Whizard Authors (many thanks to them).
- Results to be taken with a lot of care, but first results seem to show that acceptance should be similar when comparing matched and (N)LO.








√s=340 GeV




# Madgraph





- First tests also performed with MadGraph, generation at QCD NLO.
- Comparisons with  $t\bar{t}$  and  $W^+W^-b\bar{b}$  at 365 GeV.
- Kinematic 365 vs 346 GeV comparisons.
- New madgraph version coming (with BS, ISR). Private versions shared with us for testing (many thanks !). EWK NLO being worked on !

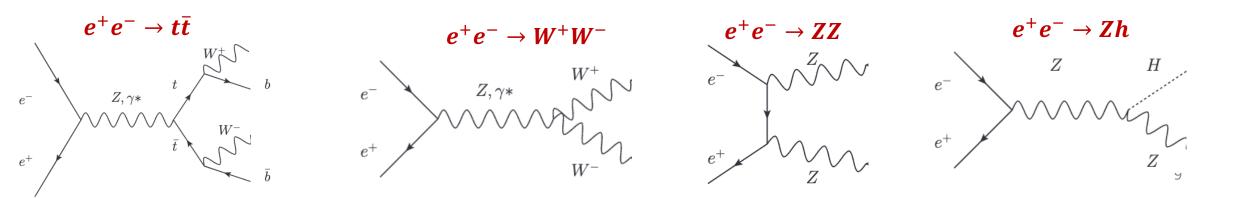






#### Toward "stable" event generation configuration




- Whizard generator seems a reference so far at lepton colliders (for  $t\bar{t}$  at least), but comparisons with other generators is critical (pyhtia, MG\_aMC@NLO).
- Several approaches possible : LO, NLO,
  - $2 \rightarrow 2 \ (e^+e^- \rightarrow t\bar{t})$ , only above threshold, Pythia for decays,
  - $2 \rightarrow 4 \ (e^+e^- \rightarrow W^+W^-b\bar{b})$ , Pythia for decays,
  - $2 \rightarrow 6 (e^+e^- \rightarrow f\bar{f}'f\bar{f}'b\bar{b})$ , most complete, several process files (one per final states).
- Pythia used for PS and hadronization :
  - Pythia6 vs Pythia8,
  - Overlap between Pythia ISR (PS) and Whizard ISR ?
- Parameters to define :
  - model parameters (masses, couplings, scales),
  - Pythia parameters,
  - beam parameters and beam backgrounds (BS negligible at first ?)
  - How to deal with systematics ...
- Get in touch with ILC/CLIC community to reproduce similar samples ?

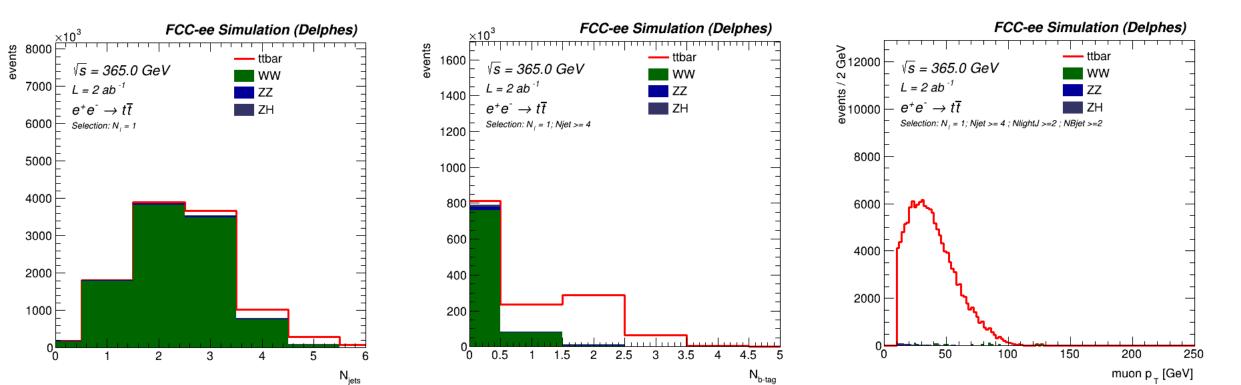


# Events generation and selection



- First step of analysis implementation, above thresholds ( $\sqrt{s}$ =365 GeV).
- (Simple) events generation with whizard3 for the discussed results :
  - LO only, including BES and ISR,
  - Top, W and Z decayed with phytia6,
  - Pythia6 also used for Parton Shower (FSR only) and hadronization (Pythia8 can also be used),
- Signal and backgrounds  $2 \rightarrow 2$ :
  - $e^+e^- \rightarrow t\bar{t}$ ,
  - $e^+e^- \rightarrow W^+W^-$ ,  $e^+e^- \rightarrow ZZ$  and  $e^+e^- \rightarrow Zh$
  - Rescaled to LO cross sections for backgrounds, NLO for signal.
- Much work needed toward final productions : expertise from ILC/CLIC on whizard usage would be extremely useful. Next slide : "naïve" whizard production tested with simple  $t\bar{t}$  selection (I+jets). As also been tested with MadGraph.






# **Proto analysis**



10

- Simple events selection (thanks to Clement for the help with the software).
- Baseline for future  $t\bar{t}$  specific tools :
  - Baseline event selections, for each channel : Required to preform MC validation, various reconstruction algorithms to be tested, optimisation etc...
  - Event reconstruction : solve events reconstructions using the beam energy information, deal with combinatorics, Kin-fit to improve the resolution => Copenhagen group (Jorgen Beck, Julie Munch Torndal) and IPHC (JA, based on a method from Patrick Janot (thanks !!) ).





# Summary



- Precise and robust MC generators required for top quark physic.
  - At lepton colliders, NLO accuracy matters for QCD and EWK !
  - Other beam related effects should be included (BES, BS),
  - It seems that cross section enhancement at threshold does not affect the acceptance much.
- We should not rely on a single generator :
  - Comparisons critical for validation and understanding!
  - Comparisons relevant only if generators cover the same physics => ensure comparing apples to apples.
  - We need help from the theory community !



- In this presentation, preliminary studies have been performed with Whizard and Magraph,
  - More detailed and systematic studies/comparisons needed,
  - There might be other generators to test,
- Expertises in CLIC/ILC communities, lets collaborate !

