Top Physics @ Linear Colliders and Perspectives at FCC-ee

Frank Simon

MAX-PLANCK-INSTITUT FÜR PHYSIK

Overview

Top physics: An essential pillar of the program at (higher energy) $e^{+} e^{-}$colliders

- The mass of the top quark
- In the continuum and at threshold
- Top quarks as a probe for New Physics
- Electroweak couplings

Focused on linear collider studies, with remarks on FCC-ee potential for selected examples

- Global analysis
- BSM decays
- Top Yukawa via ttH

The Physics Program at Linear Colliders

Energy Stages as seen from the Top

- The top quark production cross section

The Physics Program at Linear Colliders

Energy Stages as seen from the Top

The Physics Program at Linear Colliders

Energy Stages as seen from the Top

- The top quark production cross section

Top Quark Events ...
At different Energies

- CLIC 380 GeV and 3 TeV , semi-leptonic top quark pairs

and their Reconstruction

Key Elements

- Top quark physics exercises many of the main detector features of Linear Collider concepts.

and their Reconstruction

Key Elements

- Top quark physics exercises many of the main detector features of Linear Collider concepts.

flavor tagging:
b, but also c

and their Reconstruction

Key Elements

- Top quark physics exercises many of the main detector features of Linear Collider concepts.

jet and overall event reconstruction
flavor tagging:
b, but also c

and their Reconstruction

Key Elements

- Top quark physics exercises many of the main detector features of Linear Collider concepts.

lepton identification and measurement
jet and overall event reconstruction
flavor tagging:
b, but also c

The Mass

The Top Quark Mass

Towards ultimate Precision

Conceptually: Three approaches to the top mass

The Top Quark Mass

Conceptually: Three approaches to the
top mass

Direct kinematic reconstruction

The Top Quark Mass

Towards ultimate Precision

The Top Quark Mass

Towards ultimate Precision

The Top Quark Mass

Towards ultimate Precision

Kinematic Mass Reconstruction

Measuring the Mass "a la LHC"

- Kinematic reconstruction of decay products
- Profits from kinematic fits exploiting constraints:
overall energy, W mass

- For $1 \mathrm{ab}^{-1}$ statistical uncertainties of $20-40 \mathrm{MeV}$
- key challenge: controlling jet energy scales, in particular b-JES
- Main conceptual problem: Interpretation of mass value - with significant uncertainties
"old" study, 100 fb-1-1 @ 500 GeV
newer (simpler) studies at 380 GeV consistent

The Top Pair Threshold

Sensitivity to Top Quark Parameters

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes ($m_{t}{ }^{P S}$, $m_{t}{ }^{1 S}$...) -> Can be converted directly into MSbar mass.

The Top Pair Threshold

Sensitivity to Top Quark Parameters

The threshold is sensitive to top quark properties

The Top Pair Threshold

Sensitivity to Top Quark Parameters

The threshold is sensitive to top quark properties

The Top Pair Threshold

Sensitivity to Top Quark Parameters

The threshold is sensitive to top quark properties

The Top Pair Threshold

Sensitivity to Top Quark Parameters

The threshold is sensitive to top quark properties

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes ($m_{t}{ }^{P S}$, $m_{t}{ }^{1 S} \ldots$... -> Can be converted directly into MSbar mass.

The Mass at Threshold - ILC

Ultimate Precision

- Extracting mass from measurement of the cross section at different points along the threshold
- Sensitivity to different parameters depends on position along the threshold

The Mass at Threshold - ILC

Ultimate Precision

- Extracting mass from measurement of the cross section at different points along the threshold
- Sensitivity to different parameters depends on position along the threshold

The Mass at Threshold - ILC

Ultimate Precision

error source	$\Delta m_{t}^{\mathrm{PS}}[\mathrm{MeV}]$
stat. error $\left(200 \mathrm{fb}^{-1}\right)$	13
theory (NNNLO scale variations, PS scheme)	40
parametric (α_{s}, current WA) (30 MeV/0.001)	35
non-resonant contributions (such as single top)	<40
residual background / selection efficiency	$10-20$
luminosity spectrum uncertainty	<10
beam energy uncertainty	<17
combined theory \& parametric	$30-50$
combined experimental \& backgrounds	$25-50$
total (stat. + syst.)	$40-75$

- Extracting mass from measurement of the cross section at different points along the threshold
- Sensitivity to different parameters depends on position along the threshold

Collider Dependence

The Threshold at Linear and Circular Colliders

- The key difference between different colliders:

The luminosity spectrum

Collider Dependence

The Threshold at Linear and Circular Colliders

- Assuming an integrated luminosity of $200 \mathrm{fb}^{-1}$ (default for ILC, FCCee, x2 of CLIC standard scenario - 10 points spaced by 1 GeV)
- Standard fit of mass only:
- The key difference between different colliders:

The luminosity spectrum

The Threshold beyond Mass

Multi-parameter Studies

- Here: Simultaneous extraction of mass and width

The Threshold beyond Mass

Multi-parameter Studies

- Here: Simultaneous extraction of mass and width

The Threshold beyond Mass

Multi-parameter Studies

- Here: Simultaneous extraction of mass and width

The Threshold beyond Mass

Multi-parameter Studies

- Here: Simultaneous extraction of mass and width

Similarly for mass and y_{t} Combined fit increases statistical uncertainties wrt marginalized values, typical precision:
mass: 20-30 MeV
width: 45-60 MeV; yt: 10\%-15\%

Mass in radiative Events

Theoretically safe in the Continuum

- Combining the advantage of well-defined mass schemes and the convenience of above-threshold running

Mass in radiative Events

Theoretically safe in the Continuum

- Combining the advantage of well-defined mass schemes and the convenience of

cms energy	CLIC, $\sqrt{s}=380 \mathrm{GeV}$	ILC, $\sqrt{s}=500 \mathrm{GeV}$		
luminosity $\left[\mathrm{fb}^{-1}\right]$	500	1000	500	4000
statistical	140 MeV	90 MeV	350 MeV	110 MeV
theory	46 MeV	55 MeV		
lum. spectrum	20 MeV	20 MeV		
photon response	16 MeV	85 MeV		
total	150 MeV	110 MeV	360 MeV	150 MeV

Mass in radiative Events

Theoretically safe in the Continuum

- Combining the advantage of well-defined mass schemes and the convenience of above-threshold running

matched NNLO + NNLL calculation, luminosity spectrum folded in explicitly; Extraction of short distance MSR mass

cms energy	CLIC, $\sqrt{s}=380 \mathrm{GeV}$		ILC, $\sqrt{s}=500 \mathrm{GeV}$	
luminosity $\left[\mathrm{fb}^{-1}\right]$	500	1000	500	4000
statistical	140 MeV	90 MeV	350 MeV	110 MeV
theory	46 MeV	55 MeV		
lum. spectrum	20 MeV	20 MeV		
photon response	16 MeV	85 MeV		
total	150 MeV	110 MeV	360 MeV	150 MeV

can provide 5σ evidence for scale evolution ("running") of the top quark MSR mass from ILC500 data alone

Top Quarks as a Probe for New Physics

Electroweak Couplings

Exploiting Energy and Polarisation

- Accessible through measurements of:
- Total cross-section
- Forward-backward Asymmetry AFB
- Helicity Angle λ distribution (related to fraction of left- and right-handed tops)
- For each: Two polarizations $e^{-}-e^{+}{ }_{R}, e_{R}^{-}-e^{+} L$
\Rightarrow Polarized beams at linear colliders crucial

Electroweak Couplings

Example Measurement

- One example:
forward-backward asymmetry

$$
A_{F B}^{t}=\frac{N(\cos \theta>0)-N(\cos \theta<0)}{N(\cos \theta>0)+N(\cos \theta<0)}
$$

0.5% precision on $A_{\text {FB }}$ for $4 \mathrm{ab}^{-1}$ at 500 GeV

semi-leptonic events

Electroweak Couplings

Example Measurement

- One example:
forward-backward asymmetry

$$
A_{F B}^{t}=\frac{N(\cos \theta>0)-N(\cos \theta<0)}{N(\cos \theta>0)+N(\cos \theta<0)}
$$

0.5% precision on $A_{F B}$ for $4 \mathrm{ab}^{-1}$ at 500 GeV

- Also studied at higher energy, with boosted reconstruction at CLIC

Electroweak Couplings: The Role of Energy

The Choice of Collider Energy Stages

- Studied in the context of CLIC: Choice of the first energy stage a balance between Higgs and Top physics $500 \mathrm{fb}^{-1}$ with $50: 50-80 \% /+30 \%+80 \% /-30 \%$ polarisation

Moving away from threshold is beneficial because of boost

Electroweak Couplings: The Role of Energy

The Choice of Collider Energy Stages

- Studied in the context of CLIC: Choice of the first energy stage a balance between Higgs and Top physics
$500 \mathrm{fb}^{-1}$ with $50: 50-80 \% /+30 \%+80 \% /-30 \%$ polarisation

Electroweak Couplings: The Role of Energy

The Choice of Collider Energy Stages

- Studied in the context of CLIC: Choice of the first energy stage a balance between Higgs and Top physics $500 \mathrm{fb}^{-1}$ with $50: 50-80 \% /+30 \%+80 \% /-30 \%$ polarisation

Moving away from threshold is beneficial because of boost ... and parametric uncertainties.

Going too far hurts because of cross section

Electroweak Couplings

Projected Results for ILC and FCC-ee

- Electron-positron colliders can significantly improve over HL-LHC
- Different techniques used for ILC, FCC-ee studies:
- ILC using polarized beams to separate helicity in intial state
- FCC-ee study making use of self-analyzing properties of top and W decay
\Rightarrow Complementary approaches!

Details / relative performance depends on
luminosity projections

Global Analysis of Top Pair Data

EFTs to constrain New Physics

- EFT interpretation of top pair events enables reaching far into the multi-TeV space

Illustrated for CLIC: Extending beyond cross section and AFB with "statistically optimal observables" which fully use differential information further increases the potential

Global Analysis of Top Pair Data

EFTs for Linear and Circular Colliders

FCC-ee-like

Higher energy and
ILC-like polarization significantly extend the reach

... but not with the currently assumed luminosity projections

Searching for BSM Decays

A question of top pair statistics

- The clean environment at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders is a perfect environment to search for FCNC decays:
- t-> cy
- $\mathrm{t}-\mathrm{cH}$
- t-> cEmiss (heavy neutral particle)
extensive study for CLIC
$1 \mathrm{ab}^{-1} @ 380 \mathrm{GeV}$

Builds on excellent charm tagging

Searching for BSM Decays

A question of top pair statistics

- The clean environment at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders is a perfect environment to search for FCNC decays:
- $t->c y$
- t $->\mathrm{cH}$
- t -> cE miss (heavy neutral particle)
extensive study for CLIC $1 \mathrm{ab}^{-1} @ 380 \mathrm{GeV}$

Builds on excellent charm tagging

Searching for BSM Decays

A question of top pair statistics

- The clean environment at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders is a perfect environment to search for FCNC decays:
- $t->c y$
- $t \rightarrow \mathrm{cH}$
extensive study for CLIC
1 ab-1 @ 380 GeV
- t-> cEmiss (heavy neutral particle)

Builds on excellent charm tagging

$$
\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{cH}) \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{~b} \overline{\mathrm{~b}})<8.8 \times 10^{-5}
$$

Searching for BSM Decays

A question of top pair statistics

- The clean environment at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders is a perfect environment to search for FCNC decays:
- t $t->c y$
- $t->\mathrm{cH}$
extensive study for CLIC
- $t \rightarrow c E_{\text {miss }}$ (heavy neutral particle) $1 \mathrm{ab}^{-1} @ 380 \mathrm{GeV}$

Builds on excellent charm tagging

$$
\mathrm{BR}(\mathrm{t} \rightarrow \mathrm{cH}) \times \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{~b} \overline{\mathrm{~b}})<8.8 \times 10^{-5}
$$

The Top Yukawa Coupling

Direct Measurements

- Energies of 500 GeV and up enable direct measurement of top Yukawa via ttH:

The Top Yukawa Coupling

Direct Measurements

- Energies of 500 GeV and up enable direct measurement of top Yukawa via ttH:

For ILC: Interesting at 550 GeV :
2.8% with $4 \mathrm{ab}^{-1}$
$1 \mathrm{TeV}, 2.5 \mathrm{ab}^{-1}: 2 \%$
CLIC at $1.5 \mathrm{TeV}, 2.5 \mathrm{ab}^{-1}: \sim 2.7 \%$ on y_{t}

Conclusions

- Top quark physics is an essential pillar of a future $\mathrm{e}^{+} \mathrm{e}^{-}$program at the energy frontier
- It includes:
- A scan of the top quark pair threshold
- Measurements of top quarks in the continuum to study top quark properties, couplings and search for exotic decays as a comprehensive SM and BSM program
- Energies from 350 GeV , "moderately" above threshold ($\leq 500 \mathrm{GeV}$), and highest energies ($\geq 500 \mathrm{GeV}-3 \mathrm{TeV}$)

Linear Collider

Circular Collider

- polarisation significantly contributes to the physics reach at higher energy

The linear colliders ILC and CLIC have a rich demonstrated potential that extends far beyond HL-LHC. At and slightly above the threshold, FCC-ee provides comparable, partially complementary possibilites.

Conclusions

- Top quark physics is an essential pillar of a future $\mathrm{e}^{+} \mathrm{e}^{-}$program at the energy frontier
- It includes:
- A scan of the top quark pair threshold
- Measurements of top quarks in the continuum to study top quark properties, couplings and search for exotic decays as a comprehensive SM and BSM program
- Energies from 350 GeV , "moderately" above threshold ($\leq 500 \mathrm{GeV}$), and highest energies ($\geq 500 \mathrm{GeV}-3 \mathrm{TeV}$)

Linear Collider

Circular Collider

- polarisation significantly contributes to the physics reach at higher energy

The linear colliders ILC and CLIC have a rich demonstrated potential that extends far beyond HL-LHC. At and slightly above the threshold, FCC-ee provides comparable, partially complementary possibilites.
\Rightarrow In a "dream world" with both a linear and a circular $\mathrm{e}^{+} \mathrm{e}^{-}$collider, top quark physics is the domain of linear machines, with a natural first-stage energy of $350 / 380 \mathrm{GeV}$, and higher-energy stages at 550 GeV or beyond.

