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Overview

2

• The mass of the top quark 

• In the continuum and at threshold 

• Top quarks as a probe for New Physics 

• Electroweak couplings 

• Global analysis 

• BSM decays 

• Top Yukawa via ttH

Top physics: An essential pillar of the program at (higher energy) e+e- colliders

Focused on linear collider studies, 
with remarks on FCC-ee potential 
for selected examples
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The Physics Program at Linear Colliders

• The top quark production cross section
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Energy Stages as seen from the Top
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Top Quark Events … 

• CLIC 380 GeV and 3 TeV, semi-leptonic top quark pairs
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At different Energies
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… and their Reconstruction

• Top quark physics exercises many of the main detector 
features of Linear Collider concepts. 

5

Key Elements
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… and their Reconstruction

• Top quark physics exercises many of the main detector 
features of Linear Collider concepts. 

5

Key Elements

lepton identification 
and measurement

flavor tagging: 
b, but also c

jet and overall event 
reconstruction
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The Top Quark Mass
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Towards ultimate Precision

Conceptually: Three 
approaches to the 
top mass
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The Top Quark Mass
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Towards ultimate Precision

Conceptually: Three 
approaches to the 
top mass

The threshold scan 
around 350 GeV
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The top mass from 
radiative events
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The top mass from 
radiative events

interpretation challenge

theoretically 
well-defined
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Kinematic Mass Reconstruction

• Kinematic reconstruction of decay products 
• Profits from kinematic fits exploiting constraints: 

overall energy, W mass

8

Measuring the Mass “a la LHC”

en
tri

es
 / 

(2
 G

eV
)

200

400

600

800

1000  fully-hadronictt
simulated data
fit with final pdf

 backgroundtnon t

CLIC

top mass [GeV]
100 150 200 250

re
si

du
al

s
no

rm
.

-2
0
2

• For 1 ab-1 statistical uncertainties of 20 - 40 MeV 
• key challenge: controlling jet energy scales, in 

particular b-JES 

• Main conceptual problem: Interpretation of mass 
value - with significant uncertainties

“old” study, 100 fb˙-1 @ 500 GeV 

newer (simpler) studies at 380 GeV consistent

EPJ C73, 2530 (2013)
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The Top Pair Threshold

• Exploit precise theoretical calculations of cross section in 
the threshold region, in well-defined mass schemes (mtPS, 
mt1S…) -> Can be converted directly into MSbar mass.

9

Sensitivity to Top Quark Parameters
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Sensitivity to Top Quark Parameters
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… and influenced by em physics and collider parametersThe threshold is sensitive to top quark properties
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The Mass at Threshold - ILC
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Ultimate Precision
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arXiv:1902.07246; EPJ C73, 2530 (2013)

• Extracting mass from measurement of the cross section at 
different points along the threshold 
• Sensitivity to different parameters depends on position 

along the threshold
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Ultimate Precision
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Collider Dependence

• The key difference between different colliders: 
The luminosity spectrum

11

The Threshold at Linear and Circular Colliders
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• Assuming an integrated luminosity  
of 200 fb-1  
(default for ILC, FCCee, x2 of CLIC standard 
scenario - 10 points spaced by 1 GeV) 

• Standard fit of mass only: NB: Current theory uncertainties ~ 40 MeV
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The Threshold beyond Mass

• Here: Simultaneous extraction of mass and width

12

Multi-parameter Studies
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Mass in radiative Events

• Combining the advantage of well-defined 
mass schemes and the convenience of 
above-threshold running
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Electroweak Couplings

• Accessible through measurements of: 
• Total cross-section 
• Forward-backward Asymmetry AFB 
• Helicity Angle λ distribution (related to fraction of left- and right-handed tops) 

• For each: Two polarizations e-L - e+R, e-R - e+L

15

Exploiting Energy and Polarisation

generated by the existence of a new strong sector, inspired by QCD, that may man-
ifest itself at energies of around 1TeV. In all realisations of the new strong sector,
as for example Randall-Sundrum models [1] or compositeness models [2], Standard
Model fields would couple to the new sector with a strength that is proportional to
their mass. For this and other reasons, the t quark is expected to be a window to any
new physics at the TeV energy scale. New physics will modify the electro-weak ttX

vertex described in the Standard Model by Vector and Axial vector couplings V and
A to the vector bosons X = �, Z

0.

Generally speaking, an e
+
e
� linear collider (LC) can measure t quark electro-

weak couplings at the % level. In contrast to the situation at hadron colliders, the
leading-order pair production process e+e� ! tt goes directly through the ttZ

0 and
tt� vertices. There is no concurrent QCD production of t quark pairs, which increases
greatly the potential for a clean measurement. In the literature there a various ways
to describe the current at the ttX vertex. Ref. [3] uses:

�ttX
µ (k2

, q, q) = ie

⇢
�µ

⇣
eFX
1V (k

2) + �5
eFX
1A(k

2)
⌘
+

(q � q)µ
2mt

⇣
eFX
2V (k

2) + �5
eFX
2A(k

2)
⌘�

.

(1)
with k

2 being the four momentum of the exchanged boson and q and q the four vectors
of the t and t quark. Further �µ with µ = 0, .., 3 are the Dirac matrices describing
vector currents and �5 = i�0�1�2�3 is the Dirac matrix allowing to introduce an axial
vector current into the theory

Applying the Gordon identity to the vector and axial vector currents in Eq. 1 the
parametrisation of the ttX vertex can be written as:
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Within the Standard Model the Fi have the following values:
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with sw and cw being the sine and the cosine of the Weinberg angle ✓W .

All the expressions above are given at Born level. Throughout the article no
attempt will be made to go beyond that level. The coupling F

�
2V is related via

2

X: Z, γ A: axial coupling V: vector coupling
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Top quark electroweak couplings at the ILC

!

• The process e+e- → tt involves only ttZ0 and tt� primary vertices !

• A way to describe the current at the ttX vertex: 

• See details in:

/�

where: 
V = Vector coupling 
A = Axial coupling 
X = Z,�

arxiv.org/abs/hep-ph/0601112
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with sw and cw being the sine and the cosine of the Weinberg angle ✓W . The coupling
F �
2V is related via F �

2V = Qt(g�2)/2 to the anomalous magnetic moment (g�2) with
Qt being the electrical charge of the t quark. The coupling F2A is related to the dipole
moment d = (e/2mt)F2A(0) that violates the combined Charge and Parity symmetry
CP . Note, that all the expressions above are given at Born level. Throughout the
article no attempt will be made to go beyond that level.
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Collider, ILC [2,3], which can operate at centre-of-mass energies between about

2

σ (+)    AFB (+)   λhel (+)    (+ = eR
− )

σ (−)    AFB (−)   λhel (−)    (− = eL
− )

"
#
$

%$
⇒

F1V
γ    *     F2V

γ

F1V
Z   F1A

Z   F2V
Z

'
(
$

)$

"
#
$

%$
 

σ (+)    AFB (+)   λhel (+)    (+ = eR
− )

σ (−)    AFB (−)   λhel (−)    (− = eL
− )

"
#
$

%$
⇒

F1V
γ    *     F2V

γ

F1V
Z   F1A

Z   F2V
Z

'
(
$

)$

"
#
$

%$
 

σ (+)    AFB (+)   λhel (+)    (+ = eR
− )

σ (−)    AFB (−)   λhel (−)    (− = eL
− )

"
#
$

%$
⇒

F1V
γ    *     F2V

γ

F1V
Z   F1A

Z   F2V
Z

'
(
$

)$

"
#
$

%$
 

Non CP violating top quark couplings

In total: 5 non-trivial CP-
conserving form factors:

= 0 due to  
gauge invariance

➫ Polarized beams at linear colliders crucial
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Electroweak Couplings

• One example:  
forward-backward asymmetry

16

Example Measurement

ICHEP Valencia 2-9 July 2014 Ignacio.Garcia@ific.uv.es 16

The Forward-Backward Asymmetry!

Measurement of observables
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Figure 6: Reconstructed forward backward asymmetry compared with the prediction by the

event generator WHIZARD after the application of a on �2 < 15 for the beam polarisations

P, P 0 = �1,+1 as explained in the text. Note that no correction is applied for the beam

polarisations P,P 0 = +1,�1
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�t = 1 for tR �t = �1 for tL (15)

This angular distribution is therefore linear and very contrasted between tL and tR.
In practice there will be a mixture of tR and tL (beware that here L and R mean left
and right handed helicities) and �t will have a value between -1 and +1 depending
on the composition of the t quark sample.

According to [16], the angle ✓hel is measured in the rest frame of the t quark with
the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
This, by means of the energy-momentum of the t quark decaying hadronically, al-
lows for deducing the energy-momentum of the t quark decaying semi-leptonically. A
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Lorentz transformation boosts the lepton into the rest system of the t quark. This
should give a very precise knowledge of cos✓hel. To determine the helicity angle only
the angle of the lepton needs to be known. For the leptonic decays of the ⌧ lepton,
which significantly contribute to this analysis (10-15%), the charged lepton and the
⌧ lepton are approximately collinear and therefore the method remains valid.

6.1 Analysis of the helicity angle distribution

Based on the selection introduced in Sec. 4 the angular distribution of the decay
lepton in the rest frame of the t quark is shown in Fig. 7 for fully polarised beams.
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Figure 7: Polar angle of the decay lepton in the rest frame of the t quark.

The distribution exhibits a drop in reconstructed events towards cos✓hel = �1.
This drop can be explained by the event selection which suppresses leptons with small
energies. Outside this region and in contrast to e.g. the forward-backward asymmetry
the reconstructed angular distribution agrees very well with the generated one. This
means that this observable su↵ers much less from the migration e↵ect described in
Sec. 5. It is therefore not necessary to tighten the selection in the same way as
for At

FB. The reason for the bigger robustness of the angular distribution can be
explained by kinematics.

As outlined in Sec. 5 the migrations described there are provoked mainly by lon-
gitudinally polarised, soft W bosons from the decay of left handed t quarks. The
WL boson decay proportional to sin2✓. Therefore any boost into the rest frame of the
top leads predominantly to leptons with cos✓hel < 0.

14

The helicity angle!
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This angular distribution is therefore linear and very contrasted between tL and tR.
In practice there will be a mixture of tR and tL (beware that here L and R mean left
and right handed helicities) and �t will have a value between -1 and +1 depending
on the composition of the t quark sample.

According to [16], the angle ✓hel is measured in the rest frame of the t quark with
the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
This, by means of the energy-momentum of the t quark decaying hadronically, al-
lows for deducing the energy-momentum of the t quark decaying semi-leptonically. A
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and the W boson. The measured values are compared with the expected ones and
the denominator is the width of the measured distributions. Distribution of latter
two observables are shown in Fig. 2. Note, that the figure shows separately good and
badly reconstructed events. This is explained in Sec. 5. Further cuts on jet thrust
T < 0.9 and on the hadronic mass of the final state 180 < mhad. < 420GeV are
applied. In addition the mass windows for the reconstructed W -boson and t-quark
are chosen to 50 < mW < 250GeV and 120 < mt < 270GeV.
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(a) Momentum of b jet at top rest frame.
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(b) Angle between b-jet and W.

Figure 2: Distributions of the momentum of the b quark jet in the centre-of-mass frame of

the t quark, p⇤b and the cosine of the angle ✓bW between the b quark and the W boson.

The entire selection retains 53.5% signal events for the configuration P ,P 0 =
�1,+1 and 56.5% for the configuration P ,P 0 = +1,�1.

5 Measurement of the forward backward asymmetry

Garc̀ıa For the determination of the forward-backward asymmetry At
FB, the num-

ber of events in the hemispheres of the detector w.r.t. the polar angle ✓ of the t quark
is counted, i.e.

At
FB =

N(cos✓ > 0)�N(cos✓ < 0)

N(cos✓ > 0) +N(cos✓ < 0)
. (13)

Here, the polar angle of the t quark is calculated from the decay products in the
hadronic decay branch. The direction measurement depends on the correct associa-
tion of the b quarks to the jets of the hadronic b quark decays. The analysis is carried
out separately for a left-handed polarised electron beam and for a right handed po-
larised beam. Therefore, two di↵erent situations have to be distinguished, see also
Fig. 3:
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This angular distribution is therefore linear and very contrasted between tL and tR.
In practice there will be a mixture of tR and tL (beware that here L and R mean left
and right handed helicities) and �t will have a value between -1 and +1 depending
on the composition of the t quark sample.

According to [16], the angle ✓hel is measured in the rest frame of the t quark with
the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
This, by means of the energy-momentum of the t quark decaying hadronically, al-
lows for deducing the energy-momentum of the t quark decaying semi-leptonically. A

13

The cross section can be measured to  
0.5% (stat. + lumi) 

The cross section!

~4% (stat. + syst.)2% (stat. + syst.) 

semi-leptonic events
0.5% precision on AFB for 
4 ab-1 at 500 GeV

arXiv:2003.01116; JHEP 11, 003 (2019)
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the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
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Lorentz transformation boosts the lepton into the rest system of the t quark. This
should give a very precise knowledge of cos✓hel. To determine the helicity angle only
the angle of the lepton needs to be known. For the leptonic decays of the ⌧ lepton,
which significantly contribute to this analysis (10-15%), the charged lepton and the
⌧ lepton are approximately collinear and therefore the method remains valid.

6.1 Analysis of the helicity angle distribution

Based on the selection introduced in Sec. 4 the angular distribution of the decay
lepton in the rest frame of the t quark is shown in Fig. 7 for fully polarised beams.
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Figure 7: Polar angle of the decay lepton in the rest frame of the t quark.

The distribution exhibits a drop in reconstructed events towards cos✓hel = �1.
This drop can be explained by the event selection which suppresses leptons with small
energies. Outside this region and in contrast to e.g. the forward-backward asymmetry
the reconstructed angular distribution agrees very well with the generated one. This
means that this observable su↵ers much less from the migration e↵ect described in
Sec. 5. It is therefore not necessary to tighten the selection in the same way as
for At

FB. The reason for the bigger robustness of the angular distribution can be
explained by kinematics.

As outlined in Sec. 5 the migrations described there are provoked mainly by lon-
gitudinally polarised, soft W bosons from the decay of left handed t quarks. The
WL boson decay proportional to sin2✓. Therefore any boost into the rest frame of the
top leads predominantly to leptons with cos✓hel < 0.
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and right handed helicities) and �t will have a value between -1 and +1 depending
on the composition of the t quark sample.

According to [16], the angle ✓hel is measured in the rest frame of the t quark with
the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
This, by means of the energy-momentum of the t quark decaying hadronically, al-
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and the W boson. The measured values are compared with the expected ones and
the denominator is the width of the measured distributions. Distribution of latter
two observables are shown in Fig. 2. Note, that the figure shows separately good and
badly reconstructed events. This is explained in Sec. 5. Further cuts on jet thrust
T < 0.9 and on the hadronic mass of the final state 180 < mhad. < 420GeV are
applied. In addition the mass windows for the reconstructed W -boson and t-quark
are chosen to 50 < mW < 250GeV and 120 < mt < 270GeV.
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(a) Momentum of b jet at top rest frame.
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Figure 2: Distributions of the momentum of the b quark jet in the centre-of-mass frame of

the t quark, p⇤b and the cosine of the angle ✓bW between the b quark and the W boson.

The entire selection retains 53.5% signal events for the configuration P ,P 0 =
�1,+1 and 56.5% for the configuration P ,P 0 = +1,�1.

5 Measurement of the forward backward asymmetry

Garc̀ıa For the determination of the forward-backward asymmetry At
FB, the num-

ber of events in the hemispheres of the detector w.r.t. the polar angle ✓ of the t quark
is counted, i.e.

At
FB =

N(cos✓ > 0)�N(cos✓ < 0)

N(cos✓ > 0) +N(cos✓ < 0)
. (13)

Here, the polar angle of the t quark is calculated from the decay products in the
hadronic decay branch. The direction measurement depends on the correct associa-
tion of the b quarks to the jets of the hadronic b quark decays. The analysis is carried
out separately for a left-handed polarised electron beam and for a right handed po-
larised beam. Therefore, two di↵erent situations have to be distinguished, see also
Fig. 3:
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Figure 6: Reconstructed forward backward asymmetry compared with the prediction by the

event generator WHIZARD after the application of a on �2 < 15 for the beam polarisations

P, P 0 = �1,+1 as explained in the text. Note that no correction is applied for the beam

polarisations P,P 0 = +1,�1

1

�

d�

dcos✓hel
=

1 + �tcos✓hel
2

=
1

2
+ (2FR � 1)

cos✓hel
2

�t = 1 for tR �t = �1 for tL (15)

This angular distribution is therefore linear and very contrasted between tL and tR.
In practice there will be a mixture of tR and tL (beware that here L and R mean left
and right handed helicities) and �t will have a value between -1 and +1 depending
on the composition of the t quark sample.

According to [16], the angle ✓hel is measured in the rest frame of the t quark with
the z-axis defined by the direction of motion of the t quark in the laboratory. As dis-
cussed in [4] this definition of ✓hel is not unique but some detailed investigations not
reproduced in this note have shown that the choice of [16] seems optimal. The observ-
able cos✓hel is computed from the momentum of the t quark decaying semi-leptonically
into a lepton, a b quark and a neutrino. If ISR e↵ects (with the photon lost in the
beam pipe) are neglected, one can simply assume energy momentum conservation.
This, by means of the energy-momentum of the t quark decaying hadronically, al-
lows for deducing the energy-momentum of the t quark decaying semi-leptonically. A

13

The cross section can be measured to  
0.5% (stat. + lumi) 

The cross section!

~4% (stat. + syst.)2% (stat. + syst.) 

semi-leptonic events

• Also studied at higher energy, with 
boosted reconstruction at CLIC

0.5% precision on AFB for 
4 ab-1 at 500 GeV

arXiv:2003.01116; JHEP 11, 003 (2019)
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Electroweak Couplings: The Role of Energy

• Studied in the context of CLIC: Choice of the first energy stage a balance between Higgs and Top physics

17

The Choice of Collider Energy Stages

500 fb-1 with 50:50 -80%/+30% +80%/-30% polarisation

Moving away from threshold is beneficial because of boost
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Electroweak Couplings: The Role of Energy

• Studied in the context of CLIC: Choice of the first energy stage a balance between Higgs and Top physics

17

The Choice of Collider Energy Stages

500 fb-1 with 50:50 -80%/+30% +80%/-30% polarisation

Moving away from threshold is beneficial because of boost

Going too far hurts because of cross section

… and parametric uncertainties.
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Electroweak Couplings

• Electron-positron colliders can significantly improve 
over HL-LHC 

• Different techniques used for ILC, FCC-ee studies: 
• ILC using polarized beams to separate helicity in 

intial state 
• FCC-ee study making use of self-analyzing properties 

of top and W decay 
➫ Complementary approaches!

18

Projected Results for ILC and FCC-ee

Details / relative performance depends on 
luminosity projections

arXiv:2003.01116
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Global Analysis of Top Pair Data

• EFT interpretation of top pair events enables reaching far into the multi-TeV space

19

EFTs to constrain New Physics

Illustrated for CLIC: Extending beyond cross section and AFB with “statistically optimal observables” 
which fully use differential information further increases the potential 

JHEP 11, 003 (2019)
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Global Analysis of Top Pair Data

20

EFTs for Linear and Circular Colliders

FCC-ee-like

ILC-like

CLIC-like

… but not with the currently 
assumed luminosity projections

Higher energy and 
polarization significantly 
extend the reach

JHEP 10, 168 (2018)
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Searching for BSM Decays

• The clean environment at e+e- colliders is a perfect environment to search for FCNC decays: 
• t -> cγ 
• t -> cH 
• t -> cEmiss (heavy neutral particle)

21

A question of top pair statistics

extensive study for CLIC 
1 ab-1 @ 380 GeV

Builds on excellent charm tagging



Frank Simon (fsimon@mpp.mpg.de)Top Physics at Linear Colliders - FCC-France - January 2021

Searching for BSM Decays

• The clean environment at e+e- colliders is a perfect environment to search for FCNC decays: 
• t -> cγ 
• t -> cH 
• t -> cEmiss (heavy neutral particle)

21

A question of top pair statistics

extensive study for CLIC 
1 ab-1 @ 380 GeV

Builds on excellent charm tagging



Frank Simon (fsimon@mpp.mpg.de)Top Physics at Linear Colliders - FCC-France - January 2021

Searching for BSM Decays

• The clean environment at e+e- colliders is a perfect environment to search for FCNC decays: 
• t -> cγ 
• t -> cH 
• t -> cEmiss (heavy neutral particle)

21

A question of top pair statistics

extensive study for CLIC 
1 ab-1 @ 380 GeV

Builds on excellent charm tagging



Frank Simon (fsimon@mpp.mpg.de)Top Physics at Linear Colliders - FCC-France - January 2021

Searching for BSM Decays

• The clean environment at e+e- colliders is a perfect environment to search for FCNC decays: 
• t -> cγ 
• t -> cH 
• t -> cEmiss (heavy neutral particle)

21

A question of top pair statistics

extensive study for CLIC 
1 ab-1 @ 380 GeV

Builds on excellent charm tagging



Frank Simon (fsimon@mpp.mpg.de)Top Physics at Linear Colliders - FCC-France - January 2021

The Top Yukawa Coupling

• Energies of 500 GeV and up enable direct 
measurement of top Yukawa via ttH:

22

Direct Measurements

arXiv:1903.01629; JHEP 11, 003 (2019)
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The Top Yukawa Coupling

• Energies of 500 GeV and up enable direct 
measurement of top Yukawa via ttH:

22

Direct Measurements

arXiv:1903.01629; JHEP 11, 003 (2019)

CLIC at 1.5 TeV, 2.5 ab-1: ~ 2.7% on yt

Energy matters: “sweet spot” in 
the range of 550 GeV - 1.5 TeV

For ILC: Interesting at 550 GeV: 
2.8% with 4 ab-1 

1 TeV, 2.5 ab-1: 2%
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Conclusions

• Top quark physics is an essential pillar of a future e+e- program at the energy frontier 
• It includes: 

• A scan of the top quark pair threshold 
• Measurements of top quarks in the continuum to study top quark properties, couplings and search for 

exotic decays as a comprehensive SM and BSM program  
• Energies from 350 GeV, “moderately” above threshold (≤ 500 GeV), and highest energies (≥ 500 GeV - 3 TeV)

23

• polarisation significantly contributes to the physics reach at higher energy

Linear Collider
Circular Collider

The linear colliders ILC and CLIC have a rich demonstrated potential that extends far beyond HL-LHC.  
At and slightly above the threshold, FCC-ee provides comparable, partially complementary possibilites.
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• It includes: 

• A scan of the top quark pair threshold 
• Measurements of top quarks in the continuum to study top quark properties, couplings and search for 

exotic decays as a comprehensive SM and BSM program  
• Energies from 350 GeV, “moderately” above threshold (≤ 500 GeV), and highest energies (≥ 500 GeV - 3 TeV)

23

• polarisation significantly contributes to the physics reach at higher energy

➫ In a “dream world” with both a linear and a circular e+e- collider, top quark physics is the domain of 
linear machines, with a natural first-stage energy of 350/380 GeV, and higher-energy stages at 550 GeV 
or beyond. 

Linear Collider
Circular Collider

The linear colliders ILC and CLIC have a rich demonstrated potential that extends far beyond HL-LHC.  
At and slightly above the threshold, FCC-ee provides comparable, partially complementary possibilites.


