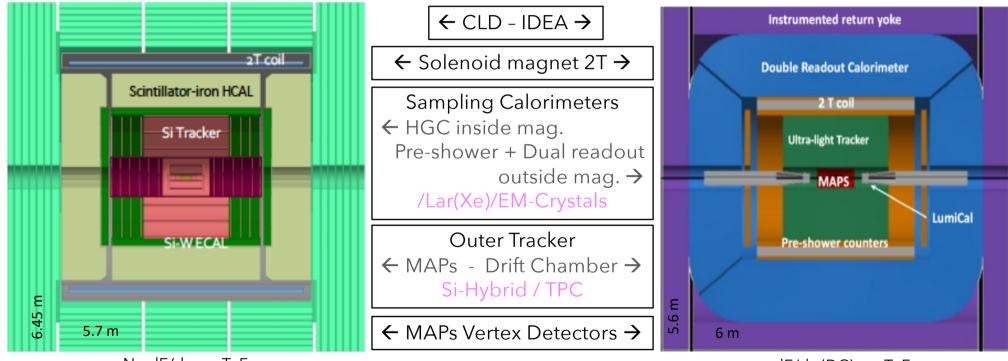
Conceptual design studies for FCC-ee experiments Detector performance perspective


FCC-France workshop, January 20-21/2021 D. Contardo, IP2I

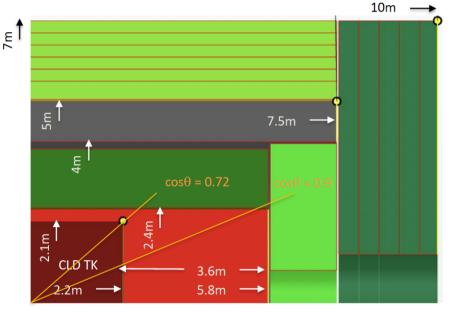
• Physics benchmarks simulations (see E. Perez)

- Assess relative effect of various detector performance variables in given configurations
- Tell if, and when, the statistical uncertainty or a performance asymptote are reach
- Detector inputs and studies Focus of this presentation
 - Needed to factorize the effect of the technology parameters and of the configuration
 - To guide R&D toward critical parameters (possibly best compromise)
 - To iterate configurations for optimization
- Eventually the process informs choices for technical design of multiple experiments
 - Optimized mix of technologies within one experiment
 - Potential complementarity in the context of the overall physics reach of the program

CLD and IDEA Conceptual Designs

- Representative of configuration alternatives and of possible technology mix*
- CLD scaled from CLICdet; Other technology options proposed for ILC and for CEPC (see M. Ruan)
- Initial physics requirements are fulfilled, now exploring PID, γ energy resolution... flavor, LLP, Z-pole

No dE/dx, no ToF

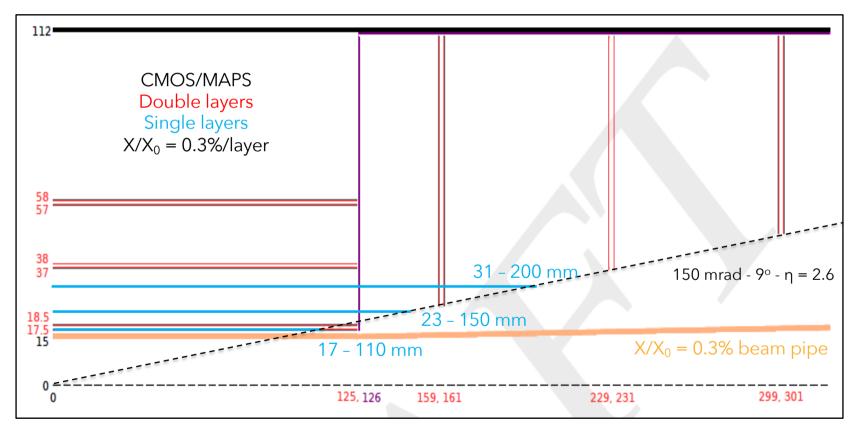

dE/dx (DC), no ToF

* F. Grancagnolo <u>https://indico.in2p3.fr/event/20792/contributions/81817/attachments/58694/78898/FCC-ee_France.pdf</u> Note : several muons chamber technology options but not driving Conceptual Design; dedicated LLP extension, ex HADES, neither addressed here https://indico.cern.ch/event/932973/contributions/4099681/attachments/2141446/3609338/HADES_A_long_lived_particle_detector_concept_for_the_FCC-ee_or_CEPC.pdf

Magnet configuration

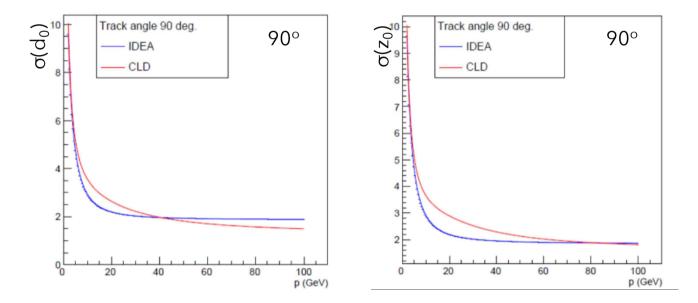
2T solenoids to achieve luminosity at the Z-pole

- CMS-like solenoid after calorimetry in CLD
 - 0.7 λ_i , 70 cm thick
- Thin solenoid before calorimetry in IDEA
 - X/X_0 $\simeq 0.46$ coil + 0.28 cold mass, 0.16 $\lambda_i,$ 30 cm thick
- ALPHA proposal for FCC-ee/ep/hh*
 - Same 4T magnets used in ee and hh experiments
 - Larger size, improved performance (acceptance, resolution), offer option to run at higher field at 240 GeV
 - No studies yet, 3T magnet option could be considered in a calorimeter outside design**, longer magnet can also be considered w/o increasing radius
- Magnet cost scales linearly with stored energy
 - Overall cost to consider calorimeter volume
 - Re-use of magnets in an ALPHA configuration should compensate increase in volumes

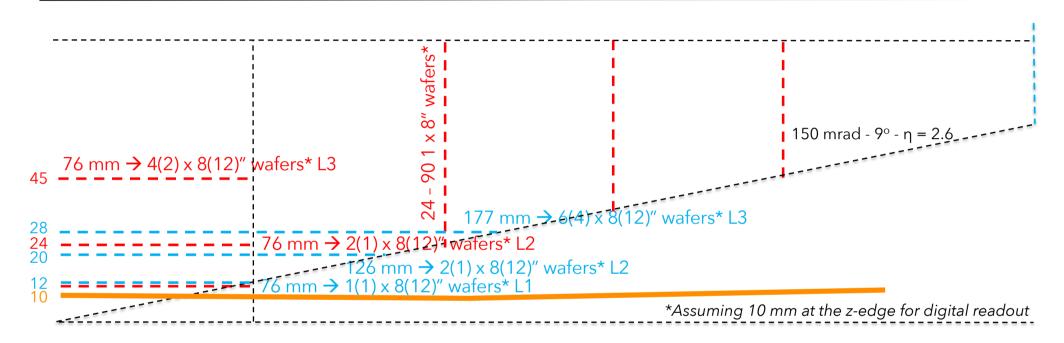


Advanced Lepton Photon Hadron Apparatus 15 x 4 m inner radius 4T solenoid would allow operation at 3 T at 240 GeV

^{*} M.Mannelli https://indico.cern.ch/event/932973/contributions/4066713/attachments/2142269/3610001/ALPHA%20Common%20Magnet%20Platform%2020%2011%2012%20V1.pd * 3T is a CEPC option


CLD and **IDEA** Vertex Detectors

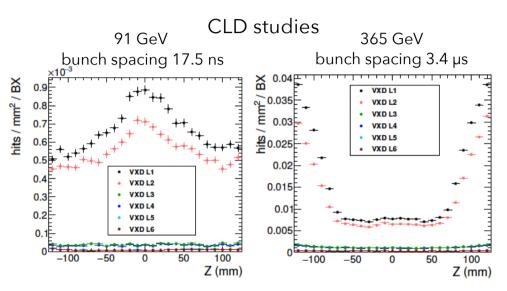
Followed by inner tracker in CLD \simeq last vertex layers in IDEA Then Outer Si-tracker in CLD and DC + Si-wrapper in IDEA


CLD and IDEA Vertex Detector, d₀ and z₀ precision

- Different number of layers, grouping/radii & length provide similar precision
 - With less layers of silicon in IDEA

- Stand alone studies can factorize the origin of the differences for optimization
- > Object reconstruction of vertices (1st, 2nd, 3rd)* & physics studies to say if small variations matter
- MAPS design will likely be very similar (apart if hit resolution versus X/X₀ need compromise)

CLD and IDEA VD scaled to a 10 mm radius beam pipe*

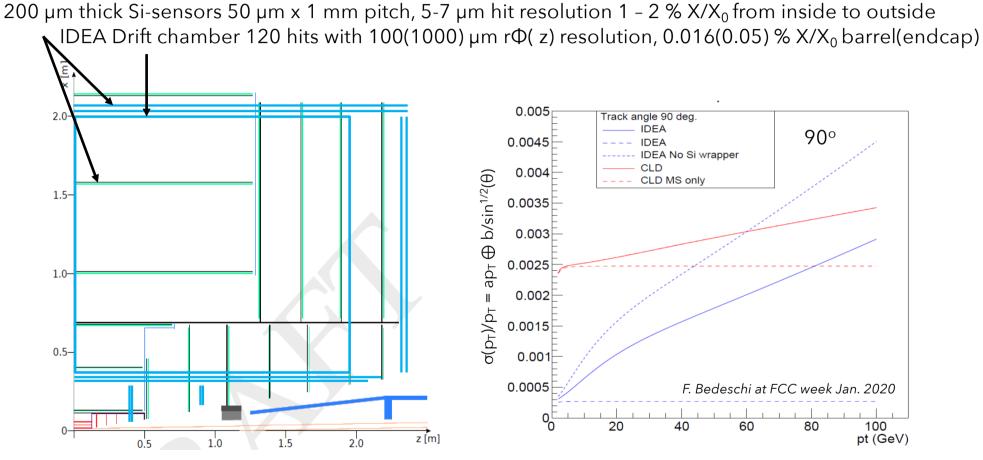


- Alice target 12" wafers 20 μm thick 0.05% X/X₀ with gas flow cooling and cylindrical design**
- \blacktriangleright Standalone simulations can assess improvements with lower radius and X/X $_0$
 - Services could be outside acceptance in IDEA design (although x 6 X/X₀ at 9° compared to CLD design)
- More performant design could be considered in physics simulation
- > Mechanical coupling of 1st layer to (cooled) beam pipe could be investigated, & also layers housed in BP
- * M. Boscolo https://indico.cern.ch/event/923801/contributions/4044051/attachments/2139973/3605610/MDI_mboscolo_FCCISworkshopNov20.pdf
- ** 16 mm bending radius with 50 µm Alpide, M. Mager https://indico.cern.ch/event/932973/contributions/4073514/attachments/2141373/3608219/2020-11-12_FCC_ALICE_MAPS.pdf 7

Vertex Detector rates

Incoherent pair production background dominates, with highest rate/bandwidth/occupancy at 91GeV

- /3.8 at 365 GeV due to bunch spacing, despite x10 bgd
- 10 μ s window, <3> hits, 25x25 μ m² pixels, 32 bit word
 - 13.5 MHz/cm² 400 Mbps/cm² 0.09 %
- 10 μ s window, <2> hits, 15x15 μ m² pixels*, 32 bit word
 - 9 MHz/cm² 300 Mbps/cm² 0.02 %

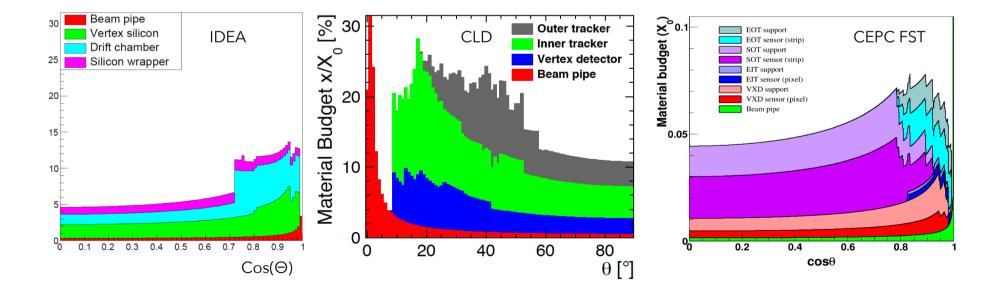


Values depend substantially on assumptions but remain well within present MAPS demonstrator abilities

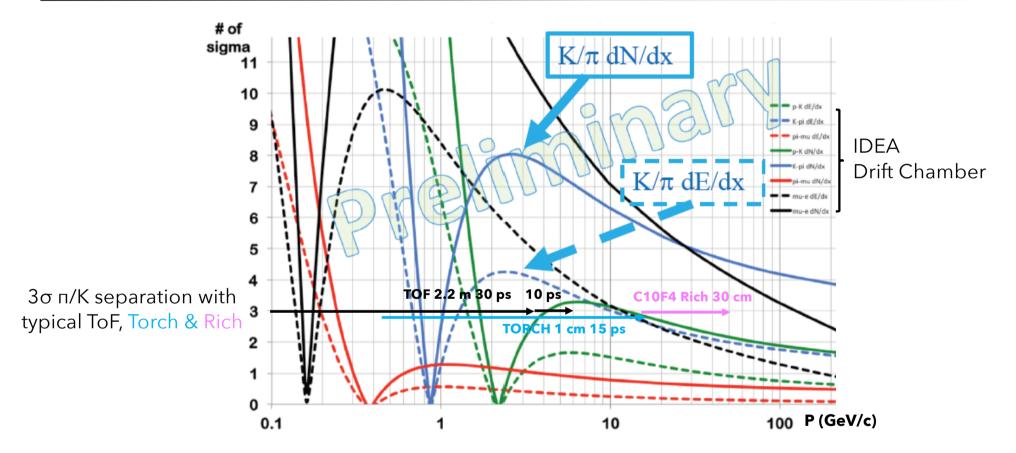
- 12 mm inner radius is likely acceptable (x3 rate increase?)
- Issue is in power consumption: longer integration time, binary continuous readout favor low power, potentially enabling gas-flow cooling, best implementation may depend on exact occupancies
- → Need for an O(1) µs (or smaller) time window to be clarified a time stamp can be provided by outer tracker layers and/or a ToF dedicated detector

* Likely a better match to 3 µm hit resolution with binary readout allowing lower power consumption

CLD and IDEA Outer Tracker configurations



The limit set by beam energy spread is not yet reached*


* E. Perez https://indico.cern.ch/event/932973/contributions/4076717/attachments/2139667/3604876/2020_11_10_detector_requirements.pdf

CLD and IDEA Outer Tracker configurations

- CLD MS can likely be substantially reduced
 - ex. with 5 first layers as in IDEA, inner tracker X/X₀ should mostly disappear (green in middle plot)
 - X/X₀ is likely too conservative for an outer tracker with MAPS CEPC considers much lower X/X₀
- IDEA shows that improved hit resolution in the last layer could still be beneficial
- Standalone studies can provide optimization of number of layers versus hit precision and X/X₀
- > Full simulation to study tracking efficiency, including for far vertices, and effect of alignment & field
- > DC potential to improve rΦ hit resolution exploiting cluster counting should be investigate

Particle ID, broad-brush coverage of technology options

ToF can cover the deep at crossing of dE/dx - larger momentum are more difficult to cover

• DC + ToF attractive and compact to cover largest momentum while integrating tracking

- DC (see M. Primavera) & TPC* target similar dE/dx resp. ≈ 4(2) % & ≈ 5(3) % w/o w/ cluster counting
 > R&D to demonstrate cluster counting maybe less effective in TPC due to long drift
- 20 ns ToF resolution could be implemented in the 2 Si-wrapper layers (if compatible with tracking needs) or in dedicated LGAD or Scint./Crystal layer(s) of lower granularity in front of the calorimeter; a micromegas design could also be considered (see T. Papaevangelou)

• In a Silicon Tracker design TORCH - RICH - TORCH/ToF + RICH would be needed**

- TORCH target a ToF resolution of 15 ps it would need space at barrel/endcap transition
 > R&D on photosensors to improve single photon time resolution
- A RICH would likely need a substantial depth ~ 30 cm (to reach ~ 40 GeV for 3σ π/K separation)
 > R&D to evaluate radiator material (w or w/o focusing) (also considering eco-friendly gas)
- > Physics studies will provide requirements for relevant n σ separation and range
- Requirements for segmentation and impact on calorimetry performance

* U. Einhaus ILD extrapolation 3.26% w/ https://indico.cern.ch/event/932973/contributions/4059402/attachments/2141475/3608471/2020_11_12_FCC_WS.pdf ** Mix depending on momentum range specs & technology progress, some past experience of focusing RICH in DELPHI and SLD experiments 12

Other benefits of ToF and tracking technology options

• ToF benefits* to be further investigated to understand interest to integrate tracking

- LLP, HSCP secondary vertices ID and mass reconstruction
- 6 ps interaction timing precision to discriminate \sqrt{s} within bunch crossings at Higgs pole
- 4 layers with 20 ps resolution would provide 10 ps per track inner layers could provide time of low P_T tracks if of interest
- > An additional timing layer at larger radius after ECAL could provide LLP ID independent of vertex**
- Pixelated LGADs Si-Hybrids w/o ampl. MAPS w or w/o ampl. could be considered
 - R&D needed to assess ultimate resolution of the different options
 - Pixels with small sensor thickness may provide resolution w/o amplification
 - \blacktriangleright Power consumption and effect on cooling (X/X₀) to be estimated
 - Preamplification stage depends on channel capacitance and number of channels
 - TDC depends on occupancy and technology node*** (channels activated if signal)
 - Digital part depends on occupancy (buffering) and bandwidth (including data size)

^{*} E. Perez https://indico.cern.ch/event/932973/contributions/4080458/attachments/2140587/3607516/2020_11_11_Timing.pdf

^{**} Chih-Hsiang Yeh https://indico.cern.ch/event/932973/contributions/4059399/attachments/2139871/3606257/Slides.pdf

^{*** 28} nm technology of interest

CLD, IDEA and LAr calorimeter concepts

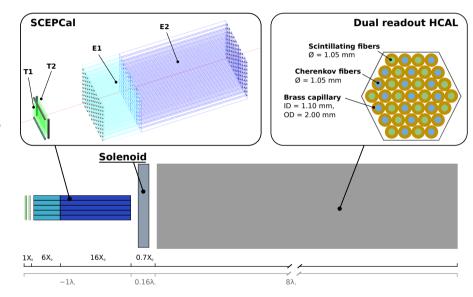
Representative of the 3 major sampling calorimeter concepts now all targeting:

- PFlow reconstruction, originally proposed and specific optimization of CALICE design
- A certain level of compensation in EM-Had. energy components of hadron showers
- Technologies differ in 1 and // segmentation, sampling fraction, timing capability...
- CLD CALICE-like design, Si-W EM + Scint. Tiles+SiPM/RPC-Steel AHCAL/DHCAL (see V. Boudry)
 - High transverse granularity (25 mm² pads in EM section followed by 9(1) cm² pads AHCAL/DHCAL
 - High longitudinal 23/48 sampling in EM/HCAL for event by event energy corrections including compensation and leakage
 - Timing capability \leq 50 ps per cell (ex. CMS HGC)
- IDEA Dual Readout calorimeter, Cerenkov & Scint. fibers + SiPM (see G. Gaudio)
 - Concept for intrinsic EM/Had compensation
 - High transverse segmentation 7 mm²
 - Timing can provide some equivalent to longitudinal segmentation
- LAr sampling calorimeter (proposal with similar concept as for FCC-hh)
 - High transverse granularity $\Delta \eta \propto \Delta \phi \approx 0.01 \times 0.01$; first layer $\Delta \eta \propto \Delta \phi \approx 0.0025 \times 0.02$ and 8 (or more) depths segmentation, good sampling fraction, uniformity and linearity
 - Timing capability 60(100) ps for 50(100) GeV showers

CLD, IDEA and LAr calorimeter performance

- Primary goal for Z-W separation of 3% resolution for 50 GeV jets appears well-fulfilled; with PFlow reconstruction techniques it should require $\sigma E(\gamma)/\sqrt{E} \leq 20\%$ and $\sigma E(K_0)/\sqrt{E} \leq 45\%$ *
 - $\sigma E(EM)/\sqrt{E} \simeq 16\%/\sqrt{E} \oplus 1\%^{**} 11\%/\sqrt{E} \oplus 0.8\%^{***} \leq 10\%/\sqrt{E^{****}}$
 - $\sigma E(had)/\sqrt{E} \simeq 44\%/\sqrt{E} \oplus 2\%^{**} 30-40\%/\sqrt{E} \oplus 1\%^{***} 37\%/\sqrt{E} \oplus 1\%^{****}$
 - σ E/E Jets $\simeq 3.5 \%$ (50 GeV) jets w/ PFlow 5.4(5.2)% 45 GeV jets w/(w/o) 1 X/X₀, w/o PFlow
- Other performance variables $e/\pi ID$, $\pi_0/\gamma ID$, angular resolution can vary with technology
 - Thorough studies are needed to assess impact of variables & relatively small performance differences with physics benchmarks
 - Performance is likely going to further improve with R&D and reconstruction techniques progress
 - Example of new technical options
 - > Si-W ECAL with MAPS (digital calorimetry including timing)
 - Dual readout with single fibers for Cerenkov and Scintillation with pulse shape analyses from front and rear readout (see E. Auffray)
 - Further exploitation of multivariate and deep learning reconstruction technics
 - Including timing measurement

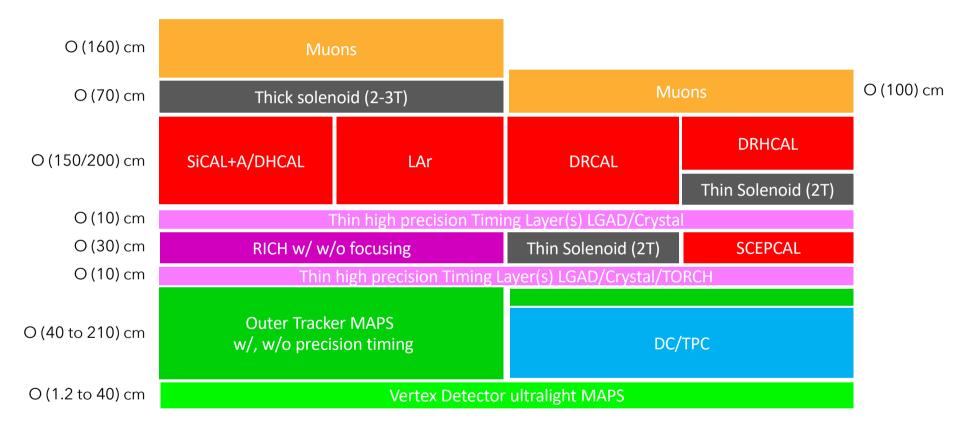
^{*} M. Lucchini <u>https://indico.cern.ch/event/932973/contributions/4062153/attachments/2141122/3607756/20_11_12_SCEPCal_in_IDEA_%40FCC_workshop.pd</u>f ** Measured with realistic prototypes D. Heuchel w/ software compensation for HCAL energy resolution


https://indico.cern.ch/event/932973/contributions/4062111/attachments/2140851/3607495/DH_FCC_Workshop_CALICE_Results_final.pdf

^{**} From simulation L. Pezzotti <u>https://indico.cern.ch/event/838435/contributions/3658384/attachments/1970595/3277775/FCCWS2020.pd</u>f

^{****} From simulations M. Alexa https://indico.cern.ch/event/727555/contributions/3456388/attachments/1869198/3075062/20190626-FCC-Week-FCC-ee-Calorimetry.pdf 15

Segmented Crystal Electromagnetic Precision Calorimeter


See R. Alexsan "ideally" 3%/ $\sqrt{E} \oplus 0.3\%$

- SCEPCal homogenous crystal*
 - 2 timing layers 3 x 3 mm² followed by 2 depths 1 x 1 cm² (1/2 R_M) \perp granularity
 - New concept of dual readout for neutral hadrons pre-showering EM/Had. Compensation
 - $\sigma E(EM)/\sqrt{E} \simeq 3\%/\sqrt{E} \oplus 0.5\%$
 - $\sigma E(had)/\sqrt{E} \simeq 27\%/\sqrt{E} \oplus 2\%$
 - Ongoing implementation in simulation with IDEA dual readout HCAL after solenoid
- Technical alternatives
 - Crystal fibers for higher 1 granularity (see E. Auffray)
 - > More // segmentation with readout between layers or timing at both ends (CEPC see M. Ruan)
 - > AHCAL/DHCAL/LArHCAL

* M. Lucchini https://indico.cern.ch/event/932973/contributions/4062153/attachments/2141122/3607756/20_11_12_SCEPCal_in_IDEA_%40FCC_workshop.pd

Conceptual Design summary exercise

- Precision Timing layer(s) may become part of Outer Tracker functionality
- Some other dedicated layers/functionalities also optional
- Technologies can be exchanged in left/right CLD/IDEA-like solenoid configurations

Outlook

- Several mix of configurations and technologies are possible for multiple FCC-ee experiments
 - Likely there will be a certain level of performance compromise targeting dedicated physics areas

• The physics benchmarks are well established

- A vast simulation work is needed to factorize effect of technology & of configurations in object reconstruction performance & to assess benefit of relatively small variations in specific physics reach
- Fast and full simulations can be used as relevant, and development of accurate detector description is anyway needed (see C. Helsen)
- R&D is crucial to anticipate and establish performance projections to be used for simulation
- The process to build conceptual design must consider cost scales