DE LA RECHERCHE À L'INDUSTRIE

2nd FCC-France Workshop

20-21 January 2021

Fast Timing measurements with Micromegas

Thomas Papaevangelou IRFU, CEA, Université Paris – Saclay

on behalf of the RD51 – PICOSEC Collaboration

www.cea.fr

The RD51 "PICOSEC" Collaboration

AUTH (Greece) K. Kordas, C. Lampoudis¹, I. Maniatis¹, I. Manthos, K. Paraschou, D. Sampsonidis, A. Tsiamis¹, S. E. Tzamarias

CEA - IRFU, LIST, LIDYL (France) S. Aune, D. Desforge, I. Giomataris, T. Gustavsson, F.J. Iguaz, M. Kebbiri, O. Maillard, P. Legou, T. Papaevangelou, M. Pomorski, E. Scorsonne, L. Sohl

CERN (Switzerland) J. Bortfeldt², F. Brunbauer, C. David, M. Lupberger², M. Lisowska, H. Müller³, E. Oliveri, F. Resnati, L. Ropelewski, L. Scharenberg, T. Schneider, A. Utrobicic, M.

van Stenis, R. Veenhof⁴, S. White

HIP (Finland) F. García

LIP (Portugal) M. Gallinaro

NCSR Demokritos, (Greece) G. Fanourakis

NTUA (Greece) Y. Tsipolitis

USTC (Hefei, China) J. Liu, B. Qi, X. Wang, Z. Zhang, Y. Zhou

- (1) Also Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
- (2) Now at University of Bonn, D-53115 Bonn, Germany.
- (3) Also University of Bonn, D-53115 Bonn, Germany
- (4) Also at National Research Nuclear University MEPhI, Kashirskoe Highway 31, Moscow, Russia; and Department of Physics, Uluda University, 16059 Bursa, Turke

10 institutes from 6 countries
44 collaborators

Motivation: particle tracking with ~10 ps timing

High Luminosity Upgrade of LHC:

- → To mitigate pile-up background. ATLAS/CMS simulations: ~150 vertexes/crossing (RMS 170 ps).
- → order of 20 ps timing + tracking info.

Extra detector requirements:

- Large surface coverage.
- Multi-pad readout for tracking.
- Resistance to aging effects.

High demand for precise timing detectors for physics (TOF particle identification), but also for medical and industrial applications

PID techniques: Alternatives to RICH methods, J. Va'vra, accepted in NIMA 876, 2017, https://dx.doi.org/10.1016/j.nima.2017.02.075

State-of-art:

Solid state detectors

- \triangleright Avalanche PhotoDiodes: ($\sigma_t \sim 20 \text{ ps}$)
- Low Gain Avalanche Diodes (σ_t ~ 30 ps)
- ► HV/HR CMOS (σ, ~ 80 ps)
 - → Radiation hardness?
 - → Cost

Gaseous detectors

- \triangleright RPCs: $(\sigma_t \sim 30 \text{ ps})$
 - → High rate limitation
- Micro-Pattern Gaseous Detectors (σ_t ~ 1 ns)
- → Improve Micromegas performance by
 - ~2 orders of magnitude
 - First step: proof of concept
 - Next steps: Large-area, aging, radiation hardness

The Micromegas detector

- Multi-Pattern Gaseous Detector, invented in 1995 at CEA Saclay¹
- Parallel plate detector with a thin metallic mesh dividing the gas volume in 2 parts:
 - conversion (drift) region (1 to 100 mm) → E ≈ 100 V/cm
 - amplification region (30 to 150 μm) → E ≈ 100 kV/cm
- Grounded read-out: conductive strips connected to FEE
- Pillars are used to reinforce the response uniformity

Conversion region

Primary electrons region

HV_{Drift}

HV_{Mesh}

Amplification region

Mesh signal

¹ Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, "*Micromegas: A high-granularity position sensitive gaseous detector for high particle-flux environments*", Nuc. Instrum. Meth. A 376 (1996) 29.

Conversion region

Radiation create electrons, which drift to the readout plane.

Amplification region

Electrons are amplified & the charge movement induces signals.

Interesting features for many applications:

Simplicity, Granularity, Homogeneity, Scalability, High rate capabilities, Radiation hardness, Low cost

Timing limitation factors:

- Large conversion region: charges created in different positions.
- Diffusion effects: ~0.1 mm/cm^{0.5} -> ~2 ns for 5 mm drift distance!

$$\sigma_{\rm t} = \frac{\sigma_{\rm I}}{v_{\rm d}} = \frac{124 \, \mu \rm m}{84 \, \frac{\mu \rm m}{\rm ns}} > 1.47 \, \rm ns$$

Timing performance can be improved by:

- simultaneous creation of primary electrons at the same distance from the mesh
- shorten the drift length > suppress direct gas ionization

The "PICOSEC Micromegas" concept

- A particle produce Cerenkov light.
- Photons produce electrons in the photocathode.
- Electrons are amplified by a two stage Micromegas detector.
- Two signal components:
 - Fast: electron peak (~1 ns). -> Timing features.
 - Slow: ion tail (~100 ns).

Small drift gap (200 nm):

- Pre-amplification possible
- Limited direct ionization
- Reduced diffusion impact

Cerenkov radiator:

Photoelectrons emitted simultaneously by the photocathode cathode (fixed distance from the mesh)

Aiming in:

- single photoelectron time jitter <100 ps</p>
- produce sufficient photoelectrons to reach timing response ~20 ps.

The "Picosec" Micromegas prototypes

Sensor:

Bulk Micromegas ø 1cm

- Capacity ~ 8 pF
- Amplification gap 64 / 128 / 192 μm

Thin-mesh Bulk Micromegas (~5 µm)

- High optical transparency
- Amplification gap 128 μm

Resistive Bulk Micromegas ø 1cm

- Resistive pads: (10 MΩ/ \square , 300 kΩ/ \square).
- \triangleright Floating pads (25 M Ω).
- Amplification gap 64 / 128 / 192 μm

Multipad Bulk Micromegas

- Hexagonal pads ø 1cm.
- Ensure homogeneous small drift gap & photocathode polarization

Photocathodes: MgF2 crystal +

- Metallic substrate + Csl
- Metal (Cr, Al)
- Metallic substrate + polycrystalline diamond
- Metallic substrate + B4C
- Boron-doped diamond

Very thin detector active part (<5 mm)

Understanding the timing properties: laser tests

Unique capabilities of **FLUME** setup at the IRAMIS/LIDYL laser facilities @ CEA Saclay:

→ Study the **single photoelectron timing** performance and **optimize** the detector

FLUME setup:

- ➤ IR Ti:S laser with pulse width 120 fs
- \rightarrow λ = 267-285 nm after doubling
- Energy ~ 10 -100 pJoule / poulse
- Spot size: ~1 mm²
- Repetition 9 kHz 4.75 MHz
- Light attenuators (fine micro-meshes 10-20% transparent)
- \rightarrow t0 reference: fast PD ($\sigma_T << 10 \text{ ps}$)
- Cividec 2 GHz, 40 db preamplifier
- > DAQ: 2.5 GHz LeCroy scope.
- $\Rightarrow \quad \text{Gas mixture: } \mathbf{Ne} + 10\% \ \mathbf{CF_4} + 20\% \ \mathbf{C_2H_6}.$

Understanding the timing properties: laser tests

J. Bortfeldt et al. (PICOSEC Collaboration), "*PICOSEC:* Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nucl. Instrum. Meth. A903 (2018) 317-325.

https://doi.org/10.1016/j.nima.2018.04.033

Best time resolution for **1 photo-electron**:

76.0 ± 0.4 ps @ Vd/Va = -425V / +450V

improves strongly with higher drift field, less with anode field

The Signal Arrival Time (SAT) depends on the e-peak charge:

- ➤ bigger pulses → smaller SAT
- ➤ higher drift field → smaller SAT

Shape of pulse is identical in all cases → timing with CFD method does not introduce dependence on pulse size

Responsible for this "slewing" of SAT: physics of the detector

Understanding the timing properties: detailed modeling / simulations

Garfield++ and electronics response

All behaviors seen in single p.e. laser data are also seen in these detailed Garfield++ simulations.

Phenomenological model describing stochastically the dynamics of the signal formation

The model describes **SAT** and **Resolution** vs. **avalanche length** & vs. **number of electrons** in avalanche (i.e, e-peak charge)

Avalanche speed = $154 \mu m/ns$ Electron speed = $134 \mu m/ns$

Time spread of SAT de

Time spread of SAT defined by the avalanche length = avalanche size

J. Bortfeldt et al., "*Modeling the Timing Characteristics of the PICOSEC Micromegas Detector*", submitted to NIM-A, arXiv:1901.10779 [physics.ins-det], https://arxiv.org/abs/1901.10779

Beam tests: systematic study of detectors & photocathodes

Beam tests with 150 GeV muons @ CERN SPS H4:

3 beam periods per year (2017-2018)

- timing measurements
- photocathode quantum efficiency (number of photoelectrons per muon)

PICOSEC Prototypes

- Time reference: two MCP-PMTs (<5 ps resolution).
- Scintillators: used to select tracks & to avoid showers.
- Tracking system: 3 triple-GEMs (40 μm precision).
- Electronics: CIVIDEC preamp. + 2.5 GHz LeCroy scopes.

Response to 150 GeV muons

Same detector as for Laser tests:

- MgF2 radiator 3 mm thick,
- > 18 nm Csl on 5.5 nm Cr
- Bulk MicroMegas, 200 µm drift gap
- "COMPASS gas"

Optimum operation point: V_{drift}/V_{anode}: -475V/+275V

Best result: 24 ± 0.3 ps

$$N_{p.e.} = 10.1 \pm 0.7$$

Result repeated in two different beam campaigns.

Noise component

Signal for single p.e from UVlamp tests: "Polya" (Gamma distribution)

Signal of MIPs

Red curve: convolution of Poison and single p.e response (Polya)

J. Bortfeldt et al. (PICOSEC Collaboration), "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nucl. Instrum. Meth. A903 (2018) 317-325. https://doi.org/10.1016/j.nima.2018.04.033

Scaling the PICOSEC concept for HEP applications

Towards an engineered PICOSEC MM module that can be scaled up and used in HEP applications:

Proof-of-principle that Micromegas can reach ~20 ps time resolution for MIPS

However, in order to prove that a viable detector can be built for particle physics experiments we also need to achieve:

- Spark quenching in the amplification gap
 - Resistive Micromegas > tests in 2018 OK!
- Large area & multichannel readout
 - Cerenkov photoelectron sharing among pads
 - Multi-channel electronics
- Photocathode aging / deterioration due to ion backflow & sparks
 - Protection of CsI or other robust &efficient photocathode
 - Detector optimization -> compensate for lower photocathode Q.E.
 - High efficiency photocathode > smaller field
 - Secondary Emitter instead of photocathode

First multi-pad prototype: single-pad response

19 hexagonal pads 5mm side

Similar detector configuration as for single pad:

MgF2 radiator 3 mm thick,18 nm CsI on 5 nm Cr, 200 μ m drift gap, operation point: V_{drift}/V_{anode} : -475V/+275V

→ 25 ps time resolution preserved for the center of each pad. However:

- Bad overall resolution (~70 ps) when combining all pads
- SAT difference between the pads (radially)
- Constant SAT difference between inner and outer part of pad
- Gain increases with the distance from the center

Curvature of the PCB → not uniform drift gap (*micromesh is bulked on the PCB*) → different drift/amplification distance for the electrons (~20 µm)

First multi-pad prototype: combining pads

After corrections we can restore the timing performance of 25 ps for all tracks

-0.05

Two approaches to ensure **future large area & modular detector** planarity:

Micromegas made on a ceramic PCB, which is entirely contained in the chamber. 100-pad prototype (10×10 cm²) ~ready @ CERN

The ATLAS NSW Micromegas approach: bulk Micromegas on a thin PCB that is backed by a honeycomb, glued on a marble-table (flatness <10 µm @ 1 m)</p>

S. Aune et al, "*Timing performance of a multi-pad PICOSEC-Micromegas detector prototype*", approved by NIM-A, https://arxiv.org/abs/2012.00545

SAT (ns)

R&D on efficient & robust photocathodes

A typical CsI photocathode used in a test beam

CsI: difficult handling & storage due to high hydrophobicity

Photocathode is damaged during intense pion beams: sparks, high ion backflow (>25% for high drift fields)

R&D in two directions:

New photocathodes

Robust:

- Diamond-Like Carbon (DLC)
- [®] B₄C
- Pure metallic (Al, Cr, ...)
- Polycrystalline Diamond or thick diamond films as electron emitters

High Efficiency:

GaN (high number of photoelectrons → modest field)

Photocathode protection

- Protection layers (LiF, MgF2,...)
- New detector structure: double mesh Micromegas
- → Also: improve resolution for single photoelectrons through detector optimization

R&D on efficient & robust photocathodes (DLC)

Performance studies:

- Q.E measurements with UV light in lab
- Beam tests at CERN SPS
- Aging tests with pion beams & laser

Relative Q.E meassurements

B4C 5 times higher q.e. compared to DLC!!

Results from beam tests

- 2.5 nm thickness is the best performing one: 97% efficiency
- Time resolution: ~35 ps with 2.5 nm DLC

Anode/Drift	Time resolution (ps)	
Voltage (V)	Aug.	Oct.
250/-550	45	37
275/-525	47	38
275/-550	₄₂ Preli	mina ³⁴
300/-500	48	39
300/-525	43	34

DLC thickness [nm]	Detection Efficiency	<n <sub="">p.e.></n>
2.5	97%	3.7
5	94%	3.4
7.5	70% Prelim	ninan 2.2
10	68%	1.7
CsI	100%	7.4

Xu Wang et al, proc MPGD2019

Optimizing the detector performance

Detector optimization:

- Field ratio / strength
- Drift gap $(120 250 \mu m)$
- Gas composition (best performance for Ne + $10\%C_2H_6 + 10\%CF_4$)

Time resolution < 50 ps is observed for single photoelectrons !!!

Time resolution ~ 10 ps is possible for high number of photoelectrons in modest field conditions

Best time resolution for 1 photo-electron: 44.0 ± 1.0 ps

@ $V_d / V_a = -525V / +275V$, 120 µm drift gap

Sohl L., "Development of PICOSEC-Micromegas for fast timing in high rate environments". PhD Thesis, CEA Saclay 17/12/2020, CEA Saclay, https://lsohl.web.cern.ch/lsohl/

High number of photoelectrons

GaN:

- Higher quantum efficiency than CsI
- Broader bandwidth towards higher wavelengths \rightarrow Quartz instead of MgF₂?
- Aging & Stability in the gas?
 - → A GaN sputtering target just received!

O. Siegmund, et al, "Development of GaN photocathodes for UV detectors" Nucl. Instr. and Meth. A, vol. 567, 1, 89-92, 2006, https://doi.org/10.1016/j.nima.2006.05.117

Embed a PICOSEC-Micromegas layer inside an electromagnetic calorimeter after few radiation lengths

- From some simple simulations: a 30 GeV electron produces ~200 p.e. in MgF2 with a metallic (Cr) photocathode after 2 radiation lengths
- Time resolution < 10 ps !!</p>
- No need for high efficiency photocathode
- No need for extremely high electric fields
- To be tested at SPS in 2021

Summary & outlook

Coupling a Micromegas detector with a radiator / photocathode we have **surpassed the physical constrains on precise timing with MPGDs**, achieving two orders of magnitude improvement:

- $ightharpoonup \sigma_t \sim 76 \text{ ps } (44 \text{ ps } in \text{ an optimized setup}) \text{ for single p.e.}$
- σ_t ~ 24 ps (with the "standard" setup) for 150 GeV muons with 3 mm MgF2 + 5.5 nm Cr substrate + 18 nm CsI photocathode, <N_{p.e.}> ≈ 10

PICOSEC Micromegas is a well-understood detector

reproduce observed behavior with detailed simulations and a phenomenological model: valuable tool for parameter-space exploration

Towards a large-scale detector, we plan the following steps for the near future:

- Commission & test the new, modular prototype with Micromegas on a ceramic PCB
- Utilize the experience from ATLAS NSW Micromegas to produce flat large area detectors
- Test BLC & B₄C photocathodes on MIP beams to address Q.E. and robustness
- Investigate GaN potential for high efficiency photocathodes
- Address the concept of the PICOSEC Micromegas embedded in an EMC. Test in electron beams.

Further information

PhD Thesis:

Sohl L., "Development of PICOSEC-Micromegas for fast timing in high rate environments", CEA Saclay 17/12/2020, https://lsohl.web.cern.ch/lsohl/

Published papers:

- 1. J. Bortfeldt et al. (PICOSEC Collaboration), "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nucl. Instrum. Meth. A903 (2018) 317-325. https://doi.org/10.1016/j.nima.2018.04.033
- 2. J. Bortfelt et al. (PICOSEC Collaboration), "Timing Performance of a Micro-Channel-Plate Photomultiplier Tube", Nucl. Instrum. Meth. A 960 (2020) 163592, https://doi.org/10.1016/j.nima.2020.163592
- 3. J. Bortfeldt et al. (PICOSEC collaboration), "Modeling the Timing Characteristics of the PICOSEC Micromegas Detector", submitted to NIM-A, arXiv:1901.10779 [physics.ins-det], https://arxiv.org/abs/1901.10779
- 4. S. Aune et al. (PICOSEC collaboration), "Timing performance of a multi-pad PICOSEC-Micromegas detector prototype", submitted to NIM-A, arXiv:2012.00545 [physics.ins-det], https://arxiv.org/abs/2012.00545

Selected Conference proceedings:

- 1. T. Papaevangelou et al., "Fast Timing for High-Rate Environments with Micromegas", EPJ Web Conf. 174 (2018) 02002, https://doi.org/10.1051/epiconf/201817402002
- 2. F.J. Iguaz et al. (PICOSEC collaboration), "Charged particle timing at sub-25 picosecond precision: The PICOSEC detection concept", Proceeding of Pisa 2018 conference, accepted in Nucl. Inst. Meth. A, https://doi.org/10.1016/j.nima.2018.08.070
- 3. L. sohl et al. (PICOSEC collaboration), "Progress of the Picosec Micromegas concept towards a robust particle detector with segmented readout', 9th international symposium on Large TPCs for low-energy rare event detection, 2018, https://doi.org/10.1088/1742-6596/1312/1/012012
- 4. L. Sohl et al. (PICOSEC collaboration), "Single photoelectron time resolution studies of the PICOSEC-Micromegas detector", JINST 15 (2020) 04, C04053, Contribution to: IPRD1, https://doi.org/10.1088/1748-0221/15/04/C04053
- 5. J Manthos et al. (PICOSEC Collaboration), "Recent Developments on Precise Timing with the PICOSEC Micromegas Detector", J.Phys.Conf.Ser. 1498 (2020) 1, 012014, https://doi.org/10.1088/1742-6596/1498/1/012014
- 6. Kordas et al. (PICOSEC collaboration), "Progress on the PICOSEC-Micromegas Detector Development: Towards a precise timing, radiation hard, large-scale particle detector with segmented readout, Nucl.Instrum.Meth.A 958 (2020) 162877, https://doi.org/10.1016/i.nima.2019.162877
- 7. D Sampsonidis et al. (PICOSEC collaboration), "Precise timing with the PICOSEC-Micromegas detector", Nuovo Cim.C 43 (2020) 1, 13, https://doi.org/10.1393/ncc/i2020-20013-8

Thank you for your attention!

Quenching sparks: Resistive Micromegas

Different types tested during 2017 & 2018 runs Values not far from the Picosec bulk readout.

Resistive strips: **41 ps** (10 MΩ/ \square), **35 ps** (300 kΩ/ \square).

Floating strips: 28 ps (25 MΩ).

Resistive readouts worked during hours in intense pion beam.

Resistive readouts operate stably at high gain in neutron fluxes of 10⁶ Hz/cm²

T. Alexopoulos et al., NIMA **640** (2011) 110-118.

Resistive strips

Floating strips

Readout

Resistor

pillars

Printed Circuit

Board (PCB)

Copper anode

