Progress on Electroweak studies at FCC-ee

Juan Alcaraz (CMS-CIEMAT)

2nd FCC-France Workshop 21 January 2021

Outline

- Focus on a few recent progress/prospects:
 - \circ A_{FR}(b)
 - Some prospects in the HF sector (Rb, charm sector)
 - \circ ee $\rightarrow \gamma \gamma$ channel
- Introduction and other <per-mille physics studies already discussed by Lucia (a few slides in backup just for completeness)

Some Tera-Z key points

- Expected precisions in a nutshell:
 - \approx 10⁻⁴ on cross sections (aimed luminosity uncertainty); possibility to reduce it by an order of magnitude using the measured σ (ee $\rightarrow \gamma \gamma$) as reference
 - \circ ≈ 10⁻⁶ statistical uncertainties (≈ 1/√N) on relative measurements like forward-backward charge asymmetries
 - Ultimate uncertainties typically dominated by systematics; precious value of "Tera" Z samples to study / constrain many of those uncertainties

Present status of A_{FB}(Q)

• Electroweak measurement presenting the largest deviations in the global SM fit (<u>final LEPEWWG paper</u> (2005))

$$A_{FB}(Q) = rac{\sigma_F^Q - \sigma_B^Q}{\sigma_F^Q + \sigma_B^Q}$$

New physics
 explanations
 require a
 substantial
 modification of
 Zbb right-hand
 couplings
 (arxiv:0610173)

Present status of A_{FB}(Q)

- QCD corrections are the dominant source of correlated systematics between measurements
- Measurement (<u>LEPEWWG</u> reference):0.0992
 - ± 0.0015 (stat.) ± 0.0007 (syst.)
- 1/2 syst. uncertainty using today's knowledge (arxXiv:2011.00530)
- Aiming for a
 ≈±0.0001 precision
 measurement at
 FCC-ee: one order of
 magnitude
 improvement!!

Source	$R_{\rm b}^0$	$R_{\rm c}^0$	$A_{ m FB}^{0, m b}$	$A_{ m FB}^{ m 0,c}$	\mathcal{A}_{b}	\mathcal{A}_{c}
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$
statistics	0.44	2.4	1.5	3.0	1.5	2.2
internal systematics	0.28	1.2	0.6	1.4	1.2	1.5
QCD effects	0.18	0	0.4	0.1	0.3	0.2
$B(D \to neut.)$	0.14	0.3	0	0	0	0
D decay multiplicity	0.13	0.6	0	0.2	0	0
B decay multiplicity	0.11	0.1	0	0.2	0	0
$B(D^+ \to K^- \pi^+ \pi^+)$	0.09	0.2	0	0.1	0	0
$B(D_s \to \phi \pi^+)$	0.02	0.5	0	0.1	0	0
$B(\Lambda_{\rm c} \to p \ {\rm K}^-\pi^+)$	0.05	0.5	0	0.1	0	0
D lifetimes	0.07	0.6	0	0.2	0	0
B decays	0	0	0.1	0.4	0	0.1
decay models	0	0.1	0.1	0.5	0.1	0.1
non incl. mixing	0	0.1	0.1	0.4	0	0
gluon splitting	0.23	0.9	0.1	0.2	0.1	0.1
c fragmentation	0.11	0.3	0.1	0.1	0.1	0.1
light quarks	0.07	0.1	0	0	0	0
beam polarisation	0	0	0	0	0.5	0.3
total correlated	0.42	1.5	0.4	0.9	0.6	0.4
total error	0.66	3.0	1.6	3.5	2.0	2.7

$A_{FB}(b/c)$

arXiv:2010.08604

- New developments for A_{FB}(b/c):
 QCD corrections and uncertainties
 can be reduced significantly using
 acollinearity (ξ) cuts ⇒ not a
 limiting factor anymore to reach
 the ≤ 0.1% precision level
- Further improvements expected from better heavy flavor tagging capabilities and a more accurate measurement of the heavy quark flight direction
- Performing a realistic measurement with more sophisticated b/c tagging techniques → define detector requirements
- Note that all these measurements can be done with exclusive decays. Certainly for the charm case. For instance, a Tera-Z facility will provide ≈10⁸ B⁺ exclusive decays

Reduction of QCD uncertainties

Detailed table of central values and uncertainties:

stat. unc. for 7x10⁷ Z→bb events

ξ_0 cut	Measured A_{FB}	$\Delta A_{FB}(\text{stat})$	ΔA_{FB} (tune)	ΔA_{FB} (theo. QCD corr)
No cut	0.0998 ± 0.0004	0.00008	0.00014	0.00033
1.50	0.1003 ± 0.0003	0.00011	0.00014	0.00023
1.00	0.1011 ± 0.0002	0.00011	0.00010	0.00016
0.50	0.1023 ± 0.0002	0.00011	0.00010	0.00007
0.30	0.1030 ± 0.0002	0.00011	0.00010	0.00003
0.20	0.1033 ± 0.0001	0.00011	0.00005	0.00002
0.10	0.1035 ± 0.0002	0.00016	0.00005	0.00001

Table 9: Central values and components of the uncertainty in the measurement of the A_{FB} asymmetry with $7 \times 10^7 \text{ e}^+\text{e}^- \to b\overline{b}(g)$ events at the Z pole, for different $\xi < \xi_0$ cuts at the reconstructed level.

≤ 0.1% relative systematic uncertainties for *ξ*≤0.3

... also in semi-leptonic decays

 Evaluating the QCD corrections as a function of the momentum in semi-leptonic b decays, now with acollinearity cuts (generator level):

- Significant reduction (note: p_i>3 GeV cut in preselection)
- Full realistic analysis still to be done

$$R_b, R_c$$

$$R_b=rac{\Gamma_{bar{b}}}{\Gamma_{had}}, \,\,\, R_c=rac{\Gamma_{car{c}}}{\Gamma_{had}}$$

 Measured at LEP/SLC very precisely using single and double-tag event fractions for the b case:

Double

No Bckgd, no hemisphere correlations $\Rightarrow \mathbf{R_b} = \frac{\mathbf{f_{single}^2}}{\mathbf{f_{double}}}$

$$f_{single} = R_b \epsilon_b + R_c \epsilon_c + (1 - R_b - R_c) \epsilon_{uds}$$

$$f_{double} = c_b \; R_b \epsilon_b^2 + c_c \; R_c \epsilon_c^2 + c_{uds} \; (1 - R_b - R_c) \epsilon_{uds}^2$$

$$c_b = c_c = c_{uds} = 1$$
 if no hemisphere correlations

b-tagged

hemisphere

Present status of Rb, Rc

- Hemisphere correlation effects (QCD) and gluon splitting are large sources of correlated uncertainty among experiments
 - LEPEWWG result: $R_b = 0.21629 \pm 0.00066$
- Aiming for a ≤ 3x10⁻⁴ precision measurement on R_b at FCC-ee: one order of magnitude improvement
- R_c to be re-studied for a Tera-Z factory via exclusive / inclusive single+double-tag methods (SLD way, not LEP main way)

Source	R_{b}^{0}	$R_{\rm c}^0$	$A_{ m FB}^{ m 0,b}$	$A_{ m FB}^{ m 0,c}$	\mathcal{A}_{b}	\mathcal{A}_{c}
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$
statistics	0.44	2.4	1.5	3.0	1.5	2.2
internal systematics	0.28	1.2	0.6	1.4	1.2	1.5
QCD effects	0.18	0	0.4	0.1	0.3	0.2
$B(D \to neut.)$	0.14	0.3	0	0	0	0
D decay multiplicity	0.13	0.6	0	0.2	0	0
B decay multiplicity	0.11	0.1	0	0.2	0	0
$B(D^+ \to K^- \pi^+ \pi^+)$	0.09	0.2	0	0.1	0	0
$B(D_s \to \phi \pi^+)$	0.02	0.5	0	0.1	0	0
$B(\Lambda_{\rm c} \to p \ {\rm K}^-\pi^+)$	0.05	0.5	0	0.1	0	0
D lifetimes	0.07	0.6	0	0.2	0	0
B decays	0	0	0.1	0.4	0	0.1
decay models	0	0.1	0.1	0.5	0.1	0.1
non incl. mixing	0	0.1	0.1	0.4	0	0
gluon splitting	0.23	0.9	0.1	0.2	0.1	0.1
c fragmentation	0.11	0.3	0.1	0.1	0.1	0.1
light quarks	0.07	0.1	0	0	0	0
beam polarisation	0	0	0	0	0.5	0.3
total correlated	0.42	1.5	0.4	0.9	0.6	0.4
total error	0.66	3.0	1.6	3.5	2.0	2.7

R_{b}, R_{c}

- Important elements of the study:
 - \circ Improvement of the b (and c) purity \rightarrow better detectors
 - Reduction of hemisphere correlations and syst. uncertainties:
 - Common vertex correlations (smaller in future detectors)
 - QCD effects (reduction with acollinearity cuts like in A_{FB}(Q) ?)
 - lacksquare Gluon splitting ightarrow huge available statistics, define strategies

Interest of the e⁺e⁻→γγ at FCC-ee

- Process minimally affected by theoretical uncertainties:
 - \circ Hadronic corrections only appear at the 10⁻⁵ level (arXiv:1906.08056)
- Measurable at "relatively" high polar angles with respect to the beam:
 - $1/\sqrt{N}=1.3e-5$ for $|\cos \theta|<0.95$,
 - $1/\sqrt{N}=2.0e-5$ for $|\cos \theta|<0.7$

(\sqrt{s} =91.2 GeV, assuming LO cross section and 100% acceptance)

	$\sqrt{s} \; (\mathrm{GeV})$	$\sigma_{\Delta lpha { m lep+top}}^{ m NNLO}/\sigma_{LO}$	$\sigma_{\Delta lpha { m had}}^{ m NNLO}/\sigma_{LO}$	$\delta\sigma_{ m had}/\sigma_{LO}$
arXiv:1906.0805	91 160 240 365	0.096% $0.108%$ $0.115%$ $0.119%$	0.085% $0.098%$ $0.108%$ $0.120%$	$3.7 \cdot 10^{-6}$ $3.8 \cdot 10^{-6}$ $3.9 \cdot 10^{-6}$ $4.0 \cdot 10^{-6}$

Table 3: Relative contribution of the NNLO leptonic(+top) and hadronic vacuum polarization correction to the cross section in setup [b] and for four FCC-ee c.m. energies. In the last column, the uncertainty due to the hadronic contribution is shown.

- Hopefully not much sensitive to new physics.
 - Can we quantify a bit more the potential of this channel?

New physics deviations in e⁺e⁻→γγ

• If we stop at the s^2/Λ^4 order (justified with large statistics and well below the true scale of physics, which is guaranteed in e^+e^- collisions):

$$\left(\frac{d\sigma}{d\cos\theta}\right)_{SM+new} = \left(\frac{d\sigma}{d\cos\theta}\right)_{SM} \left[1 + \frac{c_8 s^2}{8\pi\alpha\Lambda^4} \sin^2\theta\right]$$

- This is the only possible "leading" behavior of new physics deviations in $e^+e^- \rightarrow \gamma \gamma$. It largely simplifies the task of measuring/excluding new physics effects if we want to use this process as luminosity reference
- Physical examples (actually all, according to the previous statement, but just in case...):
 - Excited electrons (exchanged in t-channel), large extra-dimension effects (graviton exchange in s-channel)

Likelihood shape fit with $|\cos\theta|$ <0.95

	Collider	\sqrt{s}	L	$\Delta \lambda$	$\Delta\sigma_{NP}/\sigma_{SM}$	$\Lambda_{\pm} ext{ limit}$	Λ limit
	option	[TeV]	$[ab^{-1}]$	$[\text{TeV}^{-4}]$		[TeV]	[TeV]
L	FCC-ee	0.09	150.0	1.2	1.9×10^{-5}	0.8	1.4
	FCC-ee	0.16	10.0	8.9×10^{-1}	1.3×10^{-4}	0.9	1.6
	FCC-ee	0.24	5.0	3.7×10^{-1}	2.8×10^{-4}	1.1	2.0
	FCC-ee	0.35	1.5	2.2×10^{-1}	7.5×10^{-4}	1.2	2.2
	ILC	0.25	2.0	5.2×10^{-1}	4.6×10^{-4}	1.0	1.8
	ILC	0.50	4.0	4.6×10^{-2}	6.5×10^{-4}	1.8	3.3
	CLIC	0.38	1.0	2.1×10^{-1}	9.9×10^{-4}	1.2	2.3
	CLIC	1.50	1.5	2.8×10^{-3}	3.3×10^{-3}	3.7	6.7
	CLIC	3.00	5.0	1.9×10^{-4}	3.5×10^{-3}	7.2	13.0

- Reaching the ultimate FCC-ee limit at the Z requires <10⁻⁴ precision in acceptance, but one can decouple SM rate and new physics effects
 - \circ a simultaneous fit to both the measured SM rate and λ can be envisaged

Some thoughts on systematics control

- Mostly based on past LEP2 experience:
 - Use relatively soft em-shape criteria to keep selection systematics under control
 - Use (loose) acollinearity cuts to reduce the size of radiative corrections (LEP2 studies). This also rejects additional high-energy (ISR) photons in the beam pipe

- Compact detector is a must. Minimize barrel-endcap gaps or just eliminate that region in analysis in a limit case
- Edge effects and precise measurement of the fiducial region also important (like in the $\mu\mu$ case, I guess)

Some thoughts on systematics control

- Accounting for percent effects:
 - Control sample: events with 1 good photon with zero track activity and another "loosely tagged" photon: stronger acollinearity cuts and electromagnetic energy
 - Measure/correct photon conversion probability and fermion-pair FSR on loosely tagged photons
 - Measure/correct electron identification acceptance on loosely tagged photons with zero track activity
 - Maybe a good idea to measure everything in a kind of global fit
 - Use acolinear $\gamma\gamma$ (or ee) events (hard photon in the beam pipe) to look for unaccounted back-to-back correlated inefficiencies

Summary/outlook

Advancing in the EW front:

- ppm precision measurements: fine-tuning simulations and experimental techniques to keep systematics under control
- \circ b/c/au front: significant step beyond LEP status/precision, refining experimental strategies to reduce systematics to a minimum
- ee $\rightarrow \gamma \gamma$: $\approx 10^{-5}$ precision measurement in acceptance/efficiency/backgrounds possible, independently of new physics deviations \Rightarrow luminosity measurement beyond 10^{-4} precision feasible
- Significant amount of work ahead, but prospects are exciting !!

Backup

FCC-ee context

- FCC-ee: 150 ab⁻¹, 5 x 10^{12} Z decays in \approx 4 years of running at the Z pole
- Extraordinary √s precision: 100 keV at the Z, 300 keV at WW threshold → exquisite control of beam uncertainties (average, width, systematics)
- Aiming for up to ≈ 100 times better precision than LEP/SLD on several electroweak precision observables (EWPO)
- Current challenges: reduce uncertainties, establish theory / detector / machine requirements to reach the ultimate precision

Physics potential of Tera-Z

- Efficiently probing the 10-TeV scale for universal new-physics effects (Higgs compositeness, ...) with just a few years of EW running at the FCC-ee:
 - Strong constraints on the S parameter (O_{bWB}, O_W+O_B in SILH, ...)
 - Also on the T parameter (violations of custodial symmetry)

Summary table

Observable	present	FCC-ee	FCC-ee	Comment and
Observable			220	
	value \pm error	Stat.	Syst.	leading exp. error
m _z (keV)	91186700 ± 2200	4	100	From Z line shape scan
2000				Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
2				acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$R_{\rm b} \ (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
20 No. (10)				stat. extrapol. from SLD
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^{3})$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	3	1	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({\rm m_Z^2})(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate

• \approx two orders of magnitude improvement expected for $\Gamma_{\rm Z}$, ${\rm R_l}$, $\alpha_{\rm s}$, $\sin^2\!\theta_{\rm W}^{\rm \ eff}$

Examples: Γ_{z} , $\sin^{2}\theta_{W}^{eff}$

- Total Z width → basically coming from the visible width of the lineshape
- $\sin^2\theta_W$ effective: g_V/g_A coupling ratio \rightarrow forward-backward charge asymmetries (most precise in $\mu\mu$ in final state)
- 3 energy points (≈88, 91.2, 94 GeV)
- Development of utilities/generators to study in mch more detail point-to-point energy uncertainties, momentum-scale effects, ..., taking into account beam-energy spread, ISR, eventually initial-final state interference effects (E. Leogrande, E. Perez, P. Janot, ...)

HF-EW summary table

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
$A_{\rm FB}^{\rm b}, 0 \ (\times 10^4)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{\rm FB}^{{\rm pol},\tau} \ (\times 10^4)$	1498 ± 49	0.15	<2	τ polarization asymmetry
				τ decay physics
$R_{\rm b} \ (\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD

• Objective: get ≥ 20 times better than current precision

Analysis at LEP

- Cross-talk between τ decay channels and the precise understanding of the helicity shape are main items to study to reduce systematics:
 - \circ ≈ 11% τ background from other decay channels in these plots
 - \circ the tiny yellow shaded area is the non-au background

A_τ to do: optimize channel separation

Table 2: Summary of the systematic uncertainties (%) on A_{τ} and A_{e} in the single- τ analysis.

			$A_{ au}$					AL
Source	h	ho	3h	$h2\pi^0$	e	μ	Incl. h	
selection	â	0.01	=	95 - 97	0.14	0.02	0.08	
tracking	0.06	_	0.22	W — 1		0.10	_	
ECAL scale	0.15	0.11	0.21	1.10	0.47	-	5=0	
PID	0.15	0.06	0.04	0.01	0.07	0.07	0.18	
misid.	0.05	_	<u>=</u>		0.08	0.03	0.05	
photon	0.22	0.24	0.37	0.22	5 	. - .	-	
non- $ au$ back.	0.19	0.08	0.05	0.18	0.54	0.67	0.15	
τ BR	0.09	0.04	0.10	0.26	0.03	0.03	0.78	
modelling	=	-	0.70	0.70	_	-	0.09	
MC stat	0.30	0.26	0.49	0.63	0.61	0.63	0.26	
TOTAL	0.49	0.38	1.00	1.52	0.96	0.93	0.87	

- ALEPH was the best detector for this: large tracking volume for separation, large magnetic field for bending, high granularity for $\pi 0 \to \gamma \gamma$ identification
- Photon separation / π^0 identification was still the dominant systematics

A is slightly different...

Experiment	$\mathcal{A}_{ au}$	${\cal A}_{ m e}$
ALEPH	$0.1451 \pm 0.0052 \pm 0.0029$	$0.1504 \pm 0.0068 \pm 0.0008$
DELPHI	$0.1359 \pm 0.0079 \pm 0.0055$	$0.1382 \pm 0.0116 \pm 0.0005$
L3	$0.1476 \pm 0.0088 \pm 0.0062$	$0.1678 \pm 0.0127 \pm 0.0030$
OPAL	$0.1456 \pm 0.0076 \pm 0.0057$	$0.1454 \pm 0.0108 \pm 0.0036$
LEP	$0.1439 \pm 0.0035 \pm 0.0026$	$0.1498 \pm 0.0048 \pm 0.0009$

Note that A_e (≡ -P_τ^{FB}) is much less affected by systematic uncertainties, because forward-backward asymmetry measurements are largely independent of (charge symmetric) acceptance uncertainties

By-products

• Do QED radiative corrections include anyway terms equivalent to SM deviations of this $\sin^2\theta$ type?

Relative contribution of the weak NLO corrections to the ee $\to \gamma\gamma$ cross section (which approximately follows a $\sin^2\theta_{\gamma}$ dependence)

Some thoughts on systematics control

- These ideas could be tested on realistic simulations, of course, but several of them could be just tested at the generator level (to be done)
 - Generator level:
 - gamma*->fermion-pair contributions
 - Rates of collinear vs acollinear photons
 - Simulation level:
 - Rate of conversion effects (much smaller for pixel+TPC?)
 - Homogeneity of calorimeter, back-to-back effects, holes, ...
- We will be hardly able to conclude on an optimal polar angle cut before time is due. Typically, problems related with acceptance, electromagnetic identification or the presence of additional tracks / photons are more disturbing at the large |cosθ| edges, while the sensitivity loss by going more central is not so big.
- Not clear whether detailed simulations will offer much more than approximate simulations to conclude whether 10^{-5} precisions (or $\approx 10^{-4}$ precision in a local $\cos(\theta)$ region) are reachable/realistic...