First steps with flavour physics studies at FCC-ee

(using key4hep/EDM4hep, Delphes, EvtGen, FCCAnalyses, and awkward)

Donal Hill (EPFL)

with thanks to Clement Helsens and the FCCSW team

20/1/21

2nd FCC-France Workshop

Flavour at FCC-ee

- \cdot Strong case for flavour physics at the Z^0 -pole at FCC-ee
- Production of $3.8 \times 10^{11} \ Z^0$'s anticipated per year per IP
 - $5.8 \times 10^{10} \ b\bar{b}$
 - $4.6 \times 10^{10} \ c\bar{c}$
 - $1.3 \times 10^{10} \ \tau\tau$
- Z^0 production rate of ~ 100 kHz and clean e^+e^- environment put us in triggerless readout territory
 - \cdot No efficiency losses from online selection cuts
- We must identify the physics cases where FCC-ee can perform better than either LHCb Upgrade II or Belle II
 - Show a sample of mode studies today more details <u>here</u> and in backup slides

Goals: medium-term

Enable informed detector design studies with a focus on heavy flavour physics at FCC-ee

· What detector specifications are vital, and which are desirable?

Goals: shorter-term

Identify highest-priority heavy-flavour modes for FCC-ee

- How can FCC-ee extend physics reach beyond LHCb and Belle II?
- · What modes are the most theoretically compelling?

Goals: immediate

Develop software tools in FCCSW to facilitate studies

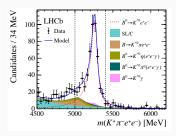
- EvtGen for exclusive decay mode simulation (this talk)
- MC truth-matching (this talk)
- Particle combinations to reconstruct modes of interest (this talk)
- Reconstruction and analysis tools (flavour tagging, decay chain building with vertex fitting, isolation, full event interpretation...)

Software and samples used

- Use key4hep/EDM4hep to simulate $e^+e^- \to Z^0 \to f\bar{f}$ processes
 - · Pythia for generation and hadronisation
 - EvtGen to decay hadrons, including option to force a user-specified decay (exclusive)
 - Delphes for IDEA detector performance parameterisation
 - Details of samples used <u>here</u>
- Additional processing of EDM4hep output in <u>FCCAnalyses</u>, providing user-friendly ROOT files with MC-association info
- User-level analysis with uproot and awkward array
 - Examples and some common functions <u>here</u>
 - Particle combinations at 4-vector level full decay chain reconstruction with vertexing not yet fully implemented

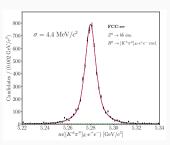
Species yields at FCC-ee (per IP per year)

- Use these yields in combination with decay branching fractions
 (B) to estimate yields for exclusive modes
- Production fractions from $e^+e^- \to Z^0 \to f\bar{f}$ Pythia
- · No efficiency factors from reconstruction or selection included


Z^0 mode	Species	Production fraction	Yield
$-b\bar{b}$	B^{\pm}	0.43	4.9×10^{10}
$b\overline{b}$	B^0	0.43	4.9×10^{10}
$bar{b}$	B_s^0	0.098	1.1×10^{10}
$bar{b}$	B_c^{\pm}	4×10^{-4}	4.5×10^7
au au	au	1	2.5×10^{10}
$c\bar{c}$	D^{\pm}	0.43	3.9×10^{10}

LHCb & Belle II estimates

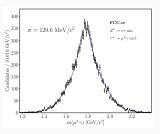
- Existing Run 1 (3 fb⁻¹) or Run 1 + 2 (9 fb⁻¹) analysis yields used as baseline figures
 - If 3 fb⁻¹, extrapolate to 9 fb⁻¹ with lumi scaling plus an additional factor 2 for higher \sqrt{s} and better trigger efficiency
- Scale 9 fb⁻¹ yields to 300 fb⁻¹ (full LHCb Upgrade II) with relative lumi factor
- · Efficiency effects <u>are</u> included since real analysis yields used
- · Belle II expectations from Belle II physics book [arXiv:1808.10567]


$$B^0 \to (K^{*0} \to K\pi)e^+e^-$$

- Rare decay involving $b \to s$ transition ($\mathcal{B} = 3.4 \times 10^{-7}$)
 - Sensitive to NP in loop-level processes
- Significant work already from LHCb on $K^{(*)}\ell^+\ell^-$ modes:
 - Lepton universality tests via $R(K^{(*)})$
 - Differential branching fractions
 - Angular analyses
- Measurements of electron mode are challenging at LHCb due to limited Bremsstrahlung recovery (tail in B invariant mass)
 - 450 events in 9 fb⁻¹ LHCb analysis [arXiv:2010.06011]

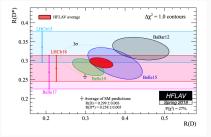
$$B^0 \to (K^{*0} \to K\pi)e^+e^-$$

- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(4.9 \times 10^{10}) \times (3.4 \times 10^{-7}) = 17,000$ events
 - LHCb 300 fb $^{-1}$: 120,000 across full q^2 range
 - 9 fb $^{-1}$ analysis uses $0.0008 < q^2 < 0.257 \text{ GeV}^2$ (14% of signal)
- Exclusive EvtGen sample, with IDEA Delphes and p>1 GeV cuts on all tracks
 - · No truth-matching applied here
 - $\cdot B^0$ peak resolution excellent
 - · No brem modelled in Delphes



LHCb σ = 75 MeV/ c^2 Belle σ = 5 MeV/ c^2 [arXiv: 1904.02440] $\tau^+ \to \mu^+ \gamma$

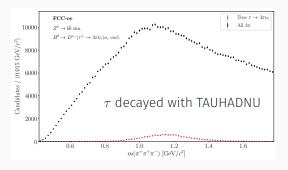
- · Lepton flavour violating decay with unobservable rate in SM
- NP scenarios predict it to have the highest ${\cal B}$ of all LFV modes [arXiv:0908.2381]
- Current best limits $\mathcal{B} < 4.4 \times 10^{-8}$ from *B*-factories
- Challenging due to lack of au vertex and presence of photon


$$\tau^+ \to \mu^+ \gamma$$

- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(2.5 \times 10^{10}) \times (1 \times 10^{-9}) = 25$ events
 - With 4 IPs, observation still possible at $\mathcal{B} = 6 \times 10^{-11}$
 - Belle II 50 ab⁻¹ projected upper limit is 10^{-9} [arXiv:1808.10567]
- Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - au peak resolution poor due to γ (3-vector assumed to point to PV)
 - Tight offline selection likely required due to random photon combinatorics and lack of decay vertex - will impact upper limit

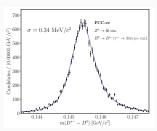
$$B^0 \to D^{*-}(\tau^+ \to \pi^+ \pi^+ \pi^- \bar{\nu}_\tau) \nu_\tau$$

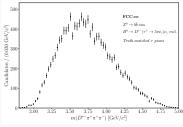
- SM lepton universality asserts that decays to different lepton types are equally probable (aside from phase space factors)
- Branching fraction ratios of τ vs. ℓ in tension with SM at 3σ level Could be caused by additional mediators such as charged Higgs
- Rich angular structure in $b \to c\ell\nu$ decays, with terms that are sensitive to different NP couplings (scalar, vector, tensor) [arXiv:1908.04643]



Decay reconstruction using $\tau^+ \to \pi^+ \pi^+ \pi^- \bar{\nu}_{\tau}$

- Advantageous to reconstruct $\tau \to 3\pi\nu$ mode, as three pions provide τ decay vertex [arXiv:1711.02505]
- Coupled with B decay vertex from D^* decay, have a measurement of τ flight
 - · Can be used to estimate momentum components
- \cdot Non-signal b-jet at FCC-ee provides B direction info
- Random track combinations and backgrounds from decays involving two charm hadrons are main challenges
 - To isolate signal distributions in FCC-ee sim, use truth matching of three pions
 - Require that the parent PDG ID for all three pions is au (±15)

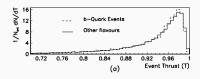

Truth-matching in action for $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \bar{\nu}_{\tau}$


- Process exclusive $B^0 \to D^{*-} \tau^+ \nu_\tau$ sample, with only a p>1 GeV cut on considered tracks
 - Large background present from random combinations even in exclusive signal sample
- Much of this will be from pions produced at the PV and on the other side of the event
 - · Flight, impact parameter, and direction requirements to be studied
 - Use the truth-matched $3\pi + D^*$ to create B^0 candidates

D^* and B^0 (D^* + au) candidates

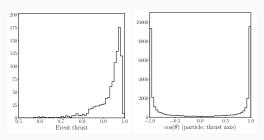
- Multiple missing neutrinos, so τ and B^0 are not fully reconstructed
- Mass distributions all have the expected form however, and $\Delta M = m(D^* D^0)$ has excellent resolution
 - \cdot Truth-matching of TAUOLA au decays to be studied
- Expect 2 million events per experiment per year
 - 600,000 in 300 fb⁻¹ LHCb after selection [arXiv:1908.04643]
 - · A 2% efficient offline selection could match full LHCb statistics

Event-level information

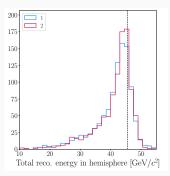

Thrust

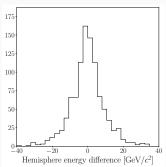
$$T = \frac{\sum_{i} |\vec{p}_{i} \cdot \hat{n}|}{\sum_{i} |\vec{p}_{i}|}$$

- Thrust axis of an event given by direction of unit vector \hat{n}
- The direction of \hat{n} is chosen to maximise the thrust T
- A two-jet event will have T = 1 (perfectly back-to-back) while a spherically symmetric event has T = 0.5
- Useful method to determine event hemispheres
 - Use angle of particles relative to the thrust axis
 - Allows calculation of energy in each hemisphere, which is important for missing momentum studies


Thrust in inclusive $Z^0 \rightarrow b\bar{b}$ events

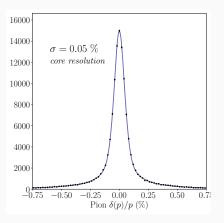
- Thrust values are peaked close to 1 in $Z^0 o b \bar b$ - similar shape to LEP data


LEP OPAL data


 Angle of particles with respect to the thrust axis provides clear separation into hemispheres (> 0 and < 0)

Hemisphere energies in $Z^0 \rightarrow b\bar{b}$ events

- Each hemisphere sums to $\sim m(Z^0)/2$, with resolution visible plus tails due to missing energy (neutrinos)
- Energy difference between hemispheres can be used for missing momentum modes
 - · The signal side should have less energy
- · See <u>Yasmine's talk</u> on $B_c^+ \to \tau^+ \nu_\tau$ for an example use case

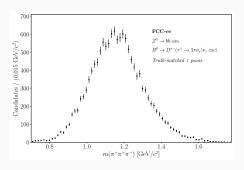

Summary

- · First steps taken in flavour physics studies at FCC-ee
 - · Early adoption of key4hep/EDM4hep
 - · FCCAnalyses providing user-level ROOT files
 - uproot and awkward array for particle combinations
- Exclusive samples generated and analysed for a set of interesting heavy flavour modes
 - · Yield expectations compare favourably to LHCb UII and Belle II
 - · We must ask: where can FCC-ee really shine?
- Move towards detector design studies which are informed by physics performance on key decay modes

Backup

Track momentum resolution in Delphes

- Pions from $B^0 o D^{*-} au^+
 u_{ au}$ exclusive sample
- · Core resolution is excellent
- · Resolution includes component from track covariance module

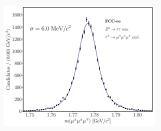

B-hadron production fractions

- + Values measured in inclusive $Z^0 \to b \bar b$ sample produced with Pythia in FCCSW
- · Use these values in yield estimations where applicable

B-hadron	Production fraction (%)
B^0	43.0
B^{\pm}	43.0
B_s^0	9.6
B_c^{\pm}	0.04
Λ_b^0	3.7

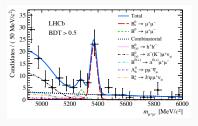
Truth-matched $m(3\pi)$ distribution in $B^0 \to D^{*-}\tau^+\nu_{\tau}$

- · Same distribution as shown in red in main slides
- Consistent with $a_1(1260)^+ \rightarrow 3\pi$ production in TAUHADNU
- TAUOLA generation also working, but MC-truth needs to be understood for matching
- Will make use of this matching for various tauonic decay modes

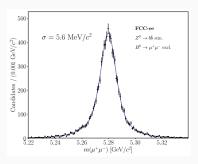


$$\tau^+ \to \mu^+ \mu^+ \mu^-$$

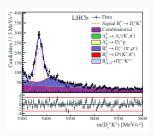
- Lepton flavour violating (LFV) decay violation of lepton universality (see B anomalies) would also imply LFV
- Unambiguous sign of NP, with a clear signal peak at m(au)
- Current best limit $\mathcal{B} < 2.1 \times 10^{-8}$ from Belle
 - NP can enhance decay to $10^{-10} < \mathcal{B} < 10^{-8}$ level
- Other similar modes e.g. $\tau^+ \to \mu^+ e^+ e^-$, $\tau^+ \to \mu^+ e^-$ can also be considered


$$\tau^+ \to \mu^+ \mu^+ \mu^-$$

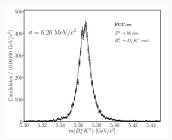
- FCC-ee yield (per experiment, per year, no selection cuts):
 - 3 events assuming $\mathcal{B} = 10^{-10}$ and $Z^0 \to \tau\tau$ production
 - With good background suppression at 50% signal efficiency, observation possible (across experiments) at $\mathcal{B}\sim 10^{-10}$
 - Belle II 50 ab $^{-1}$ projected upper limit is 3.3×10^{-10} [arXiv:1808.10567]
- · Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - \cdot au peak resolution very good
 - \cdot au flight and excellent vertexing would help fight background


$B^0 \to \mu^+ \mu^-$

- Very rare decay ($\mathcal{B} = 1.07 \times 10^{-10}$ in SM) which is sensitive to NP contributions
- \cdot Not observed yet, but ${\cal B}$ measurements by LHC experiments
- PDG combination $\mathcal{B} = (1.1 \pm 1.4) \times 10^{-10}$
 - In agreement with SM, but theory error is 0.1×10^{-10} [arXiv:1208.0934]
- · Well-motivated to push for observation and < $10\%~\mathcal{B}$ precision


$$B^0 \to \mu^+ \mu^-$$

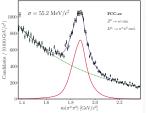
- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(4.9 \times 10^{10}) \times (1.07 \times 10^{-10}) = 5$ events
 - Anticipate ~ 80 events with 4 IPs
 - 300 fb $^{-1}$ LHCb: ~ 700 events based on 7 observed in 4.4 fb $^{-1}$
- Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - B^0 peak resolution excellent

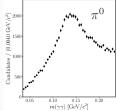

$B_s^0 \rightarrow (D_s^- \rightarrow K^+ K^- \pi^-) K^+$ (also see <u>here</u> from Roy)

- \cdot Time-dependent CP violation due to interference between mixing and decay amplitudes
- Measures $\gamma-2\beta_s$ at tree-level, which can be compared to $\phi_s=-2\beta_s$ measured in charmonium $(B^0\to J/\psi K_s^0 \text{ e.t.c.})$
 - Comparison sensitive to NP, as measured ϕ_s may not be ϕ_s^{SM}
- · An interesting mode for FCC-ee because:
 - Belle-II does not resolve B^0_s time-dependence
 - · LHCb flavour-tagging efficiency is poor

$B_s^0 \to D_s^- K^+$

- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(1.1 \times 10^{10}) \times (1.2 \times 10^{-5}) = 135,000$ events
 - · Anticipate ~ 2 million events with 4 IPs
 - 300 fb $^{-1}$ LHCb: 340,000 events based on 1770 observed in 3 fb $^{-1}$
- Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - B_s^0 peak resolution excellent
 - Would PID selections be needed to separate from $B_s^0 \to D_s^- \pi^+$?

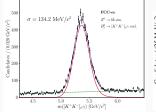

LHCb σ = 17 MeV/ c^2

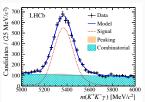

$$D^+ \rightarrow \pi^+ \pi^0$$

- In SM, decay is dominated by two singly Cabibbo-suppressed tree-level diagrams
- · Other diagrams?
 - · Gluonic penguin forbidden from isospin conservation
 - Electroweak penguin suppressed by $\alpha \text{,} \sim 10^{-6}$ contribution
- No CP asymmetry expected in SM as a result, as no comparably sized amplitudes can interfere
 - \cdot Measurement of CP asymmetry is thus a clear signal of NP
- Efforts at LHCb ongoing, but made difficult by lack of decay vertex and limited π^0 reconstruction efficiency

$$D^+ \rightarrow \pi^+ \pi^0$$

- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(3.9 \times 10^{10}) \times (1.2 \times 10^{-3}) = 48$ million events
 - $\sim 5 \times 10^{-5}$ precision on A_{CP} , if systematics can be controlled
 - 2×10^{-3} precision predicted at Belle II [arXiv:1808.10567]
- Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - \cdot D^+ and π^0 peaks limited in resolution due to photons
 - Background in π^0 distribution from random photon combinatorics, leading to background in D^+

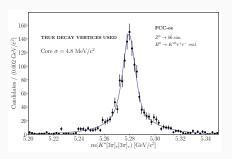



$$B_s^0 \to (\phi \to K^+K^-)\gamma$$

- Decay involves $b \rightarrow s\gamma$ loop-level transition
- Decay rate is well-measured, but photon polarisation in the decay is sensitive to NP
- Predominantly left-handed in SM, but NP models can introduce a sizeable right-handed component
 - · Polarisation can be affected by NP without altering rate
- Polarisation observable \mathcal{A}^{Δ} has been studied at LHCb: $\mathcal{A}^{\Delta} = -0.67^{+0.37}_{-0.41} \pm 0.17$ [arXiv:1905.06284]
 - Sensitive to ratio of right and left polarisation amplitudes
 - SM prediction $\mathcal{A}_{\rm SM}^{\Delta}$ = 0.047 $^{+0.029}_{-0.025}$, agreement at 1.7 σ

$B_s^0 \to (\phi \to K^+K^-)\gamma$

- FCC-ee yield (per experiment, per year, no selection cuts):
 - $(1.1 \times 10^{10}) \times (1.7 \times 10^{-5})$ = 190,000 events
 - Anticipate ~ 3 million events with 4 IPs
 - LHCb 3 fb $^{-1}$ yield ~ 4000, so ~ 800,000 with 300 fb $^{-1}$
 - Precision below theory error on \mathcal{A}^{Δ} possible
- Exclusive EvtGen sample with IDEA Delphes
 - · No truth-matching applied
 - \cdot B_s^0 peak resolution limited due to photon
 - Background even in exclusive signal MC sample from random photon combinatorics


LHCb σ = $100~{\rm MeV}/c^2$

$B^0 \to K^{*0} \tau^+ \tau^-$ (see Lingfeng Li's talk at November workshop)

- Tauonic equivalent of $K^{*0}\ell^+\ell^-$, critical to extend the $b\to sll$ lepton universality picture
- Total $\mathcal{B}=3.2\times 10^{-10}$, assuming B^0 decay $\mathcal{B}=10^{-7}$ and reconstruct only $K^*\to K\pi$ and $\tau\to 3\pi\nu$
- $(4.9\times10^{10})\times(3.2\times10^{-10})$ = 16 events per exp. per year • Considering sub-decays with neutrals can boost this to ~ 1000
- . Very large SM backgrounds from decays where charm meson fakes $au o 3\pi$ signal

$$B^0 \to K^{*0} \tau^+ \tau^-$$

- Using truth-matched K^* and au's to build B^0
- au momentum reconstruction technique from CDR has been successfully applied to key4hep/EDM4hep output
- · Perfect vertex knowledge for now
 - Resolution from momentum measurement (~ 5 MeV/ c^2) will be degraded further by finite vertex precision

Other important missing momentum modes

- $B_s^0 \to \tau^+ \tau^-$
 - · Not yet observed, with only weak ${\cal B}$ limits ~ 10^{-2}
 - \cdot Significant NP enhancements possible due to larger au mass
 - With SM $\mathcal{B} \sim 10^{-6}$ and $\tau \to 3\pi\nu$, 80 events per exp. per year
- + $B_c^+
 ightarrow au^+
 u_ au$ (no chance at LHCb, no B_c^+ at Belle II)
 - Same vertex factors as $B^0 \to D^{(*)} \tau \nu_{\tau}$, so an important crosscheck of $b \to c l \nu$ lepton universality measurements
 - Measurement of $|V_{cb}|$ possible
 - CEPC studies exist, which we should aim to match and extend [arXiv:2007.08234]
 - · See talk from Yasmine here for details