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Why do we care about B+c → τ+ν ?

Contributions in the SM and NP scenarios :

• Can be used to measure CKM matrix element ∣Vcb∣, moreover it is
highly sensitive to scalar contributions from NP (e.g. charged
Higgs, leptoquarks).

• Not possible at LHCb due to missing energy – lack of constraints
and reconstructed information.

• No B+c mesons produced at Belle II.
• FCC-ee is an ideal machine to study this decay! 1



Why do we care about B+c → τ+ν?

Most general EFT description at µ =mb:

• Ci ≡ Wilson coefficients induced by NP (Ci = 0 ∀i in the SM).

• Useful definitions: CV (A) = CVR
±CVL

and CS(P ) = CSR
±CSL

.

• B+c → τ+ν very sensitive to pseudo-scalar contributions:

Hence, CP lifts the SM helicity suppression – sizable
enhancement!
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SM prediction

SM contribution:

where we have used the decay constant fBc = 434(15) MeV [HPQCD,
1503.05762] and ∣Vcb∣excl = 39.25(56) × 10−3 [HFLAV].

NB: Improved LQCD computations of fBc are needed to match the
experimental precision expected at FCC-ee.
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Decay topology – see dedicated talk by D.Hill
B+c lifetime very short ∼ 0.5 ps, too many degrees of freedom to fully reconstruct the decay.
Strategy based on exploring:

• thrust axis properties to suppress contamination from light jets.
• decay τ+ → π+π+π−ν̄ to separate from the B+ → τ+ν events.
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Information about simulation

• Samples produced with Pythia, EvtGen and Delphes in EDM4hep,
with post-processing in FCCAnalyses to calculate thrust and
hemisphere energy information

• 30,000 B+c → τ+ντ after filtering (filter keeps events with a B+c
produced in hadronisation)

• τ+ → 3πν̄τ generated via TAUHADNU model

• Inclusive Z0 → qq̄, cc̄, bb̄ - 10, 5, 10 million respectively
• MVA studies (see later) combine these into a single 1 million event
training sample using Z0 branching fractions

• Background rejection then tested using full samples
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Emax/min/diff - clear separation for B+c → τ+ντ
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Emax/min
c

• More separation power in the minimum energy hemisphere

• This side is predominantly signal due to missing neutrinos

• In inclusive background, hemispheres have similar energy on
average
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Emax/min
n - more power in min. E hemisphere (mostly signal side)

• More separation power in the minimum energy hemisphere

• This side is predominantly signal due to missing neutrinos

• In inclusive background, hemispheres have similar energy on
average
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Mmax/min
c

• Non-signal sides are similar in terms of charged particle content

• Signal side slightly lower in multiplicity, since we only have
three charged tracks in signal decay
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Mmax/min
n

• Non-signal sides are similar in terms of neutral particle content
• Neutral particles are charge-zero objects reconstructed in PFlow

• Signal side quite a bit more quiet
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Multivariate analysis

• Use hemisphere energy information to distinguish B+c → τ+ντ
from Z0 → qq̄, cc̄, bb̄

• Create combined background sample of 1 million events using
Z0 PDG branching fractions

• Use XGBClassifier from xgboost package with:
• n_estimators = 400
• learning_rate = 0.3
• max_depth = 3
• All other hyper-parameters set to defaults

• Split samples into A and B, and train two BDTs (A and B)
• Apply BDT A (B) to sample B (A) to get predictions for full sample
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ROC AUC and feature ranking
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• Lower energy hemisphere dominates, but also contributions
from charged and neutral sub-totals and the maximum
hemisphere energy
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BDT score distributions

• Reject all qq̄, cc̄, and bb̄ background events (in their respective
samples) with BDT > 0.997 cut

• 107-level rejection, as samples are 5-10 million in size
• qq̄ > cc̄ > bb̄ in terms of rejection power

• The same BDT cut is 60% efficient on B+c → τ+ντ signal
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Signal purity estimate

• Assume 5 × 1012 Z0 in FCC-ee operation

• With B(Z0 → hadrons) = 69.9%, leads to 7.0 × 1012 inclusive
background decays

• N(B+c → τ+ντ) = 237,000 using the following factors

Factor Value

N(Z0) 5 × 1012

B(Z0 → bb̄) 0.1512
B+c production rate 7.9 × 10−5 [1501.00338(NRQCD)]
B(B+c → τ+ντ) 0.0236
B(τ+ → {3π,3ππ0}ν̄τ) 0.14

• Signal purity before any selection is thus 3 × 10−8.
• The Input marked in orange has to be carefully looked at.
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Signal purity estimate

• Let’s target 10,000 signal events with 10,000 background (50%
purity) for a ∼ 1% precision B measurement

• Total background rejection required: 7.0 × 108

• Total signal efficiency required: 4.2%

• BDT achieves 107 rejection for 60% signal efficiency:
• Brings us from 3 × 10−8 to 20% purity (another factor 2.5 in purity
needed)

• Further factor of 70 in background rejection needed
• Can tolerate an additional signal efficiency of 7%

• Selections based on specific signal properties (3π vertex quality,
resonant structure, PV separation) to be studied to understand
additional background rejection capabilities
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Conclusion & next steps

• Event-level hemisphere energy information provides good
discrimination for missing energy mode B+c → τ+ντ

• Larger background and signal samples to be generated, allowing
rejection to be better understood

• Most dangerous physics background is B+ → τ+ντ - will study
this vs. signal in dedicated manner

• B+ lifetime is 3 times larger than B+c , so τ vertex separation from
PV will be an important discriminator

• Investigate the best way to normalise the measurement.
• Investigation of possible improvements to the theory inputs.
• Preparation of the phenomenology interpretation.
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Flavour anomalies

Tensions observed in the data in both neutral currents b→ sℓ+ℓ− and
charged ones b→ cℓ+ν . Not clear yet if this is a sign of NP or not. Yet...

Note : tensions seen in both LU tests + angular analyses.
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Lepto-quarkology

Model RK(∗) RD(∗) RK(∗) & RD(∗)

S1 = (3,1)−1/3 6 4 6

R2 = (3,2) 7/6 6 4 6

R̃2 = (3,2) 1/6 6 6 6

S3 = (3,3)−1/3 4 6 6

U1 = (3,1) 2/3 4 4 4

U3 = (3,3) 2/3 4 6 6

Table 1: Summary of LQ models which can accommodate RK(∗) , RD(∗) and
both. Table based work from 1808.08179..
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Variable correlations - B+c → τ+ντ

• Some strong correlations but also quite a lot of mutual
information
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Variable correlations - inclusive Z0 → qq̄ (q = u, d, s)

• Differences in correlation structure compared to signal (similar
in cc̄ and bb̄, see backup slides)
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