
First look at $B_c^+ \rightarrow \tau^+ \nu$ with FCC-ee

Yasmine Amhis (IJCLab), Clement Helsens (CERN), Donal Hill (EPFL), Olcyr Sumensari (Univ. Zurich)

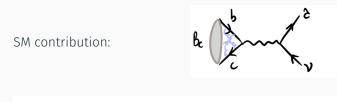
20/01/21

2nd FCC France workshop

Contributions in the SM and NP scenarios :

- Can be used to measure CKM matrix element $|V_{cb}|$, moreover it is highly sensitive to scalar contributions from NP (e.g. charged Higgs, leptoquarks).
- Not possible at LHCb due to missing energy lack of constraints and reconstructed information.
- $\cdot \,$ No B_c^+ mesons produced at Belle II.
- FCC-ee is an ideal machine to study this decay!

Why do we care about $B_c^+ \rightarrow \tau^+ \nu$?

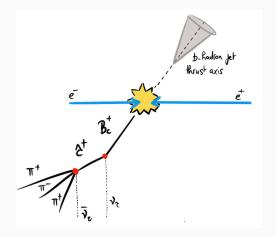

Most general EFT description at $\mu = m_b$:

$$\begin{split} \begin{split} \ensuremath{ \begin{split} \ensuremath{\mathcal{H}} = & \frac{4}{\sqrt{2}} \, V_{Cb} \left[\begin{array}{c} (1 + C_V) \, (\overline{c}_L \chi^V b_L) (\overline{e}_L \chi_V v_L) \\ & + C_{VR} \, (\overline{c}_R \chi^V b_R) (\overline{e}_L \chi_V v_L) \\ & + C_{SL} \, (\overline{c}_L b_R) \, (\overline{e}_R v_L) \\ & + C_{SR} \, (\overline{c}_R b_L) \, (\overline{e}_R v_L) \right] + \ensuremath{ \ensuremath{\mathcal{H}}} \end{split}$$

- $C_i \equiv$ Wilson coefficients induced by NP ($C_i = 0 \forall i$ in the SM).
- Useful definitions: $C_{V(A)} = C_{V_R} \pm C_{V_L}$ and $C_{S(P)} = C_{S_R} \pm C_{S_L}$.
- $B_c^+ \rightarrow \tau^+ \nu$ very sensitive to pseudo-scalar contributions:

$$B(B_{C} \rightarrow 2\nu) = B(B_{C} \rightarrow 2\nu) \left| A_{-} C_{A} - C_{P} \frac{m_{b_{c}}^{2}}{m_{2}(m_{b}+m_{c})} \right|^{2}$$

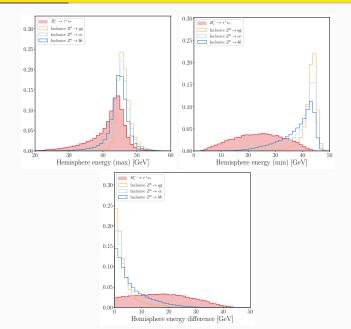
Hence, C_P lifts the SM helicity suppression – sizable enhancement!


$$\mathcal{B}(\mathcal{B}_{c} \rightarrow \partial \nu)^{SM} = \mathcal{E}_{\mathbf{B}_{c}} G_{\mathbf{F}}^{2} \frac{|V_{cb}|^{2} \mathcal{I}_{\mathbf{B}_{c}} - m_{\mathbf{B}_{c}}}{8\pi} \cdot m_{\mathcal{E}}^{2} \left(1 - \frac{m_{\mathcal{E}}^{2}}{m_{\mathbf{B}_{c}}^{2}}\right)^{2} = 2.3 (2) \times$$

where we have used the decay constant f_{Bc} = 434(15) MeV [HPQCD, 1503.05762] and $|V_{cb}|^{\text{excl}}$ = 39.25(56) × 10⁻³ [HFLAV].

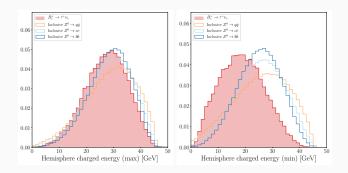
NB: Improved LQCD computations of f_{Bc} are needed to match the experimental precision expected at FCC-ee.

Decay topology - see dedicated talk by D.Hill

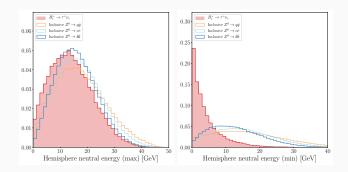

 B_c^+ lifetime very short ~ 0.5 ps, too many degrees of freedom to fully reconstruct the decay. Strategy based on exploring:

- thrust axis properties to suppress contamination from light jets.
- decay $\tau^+ \to \pi^+ \pi^+ \pi^- \bar{\nu}$ to separate from the $B^+ \to \tau^+ \nu$ events.

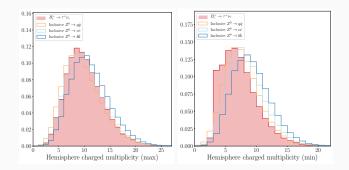
- Samples produced with Pythia, EvtGen and Delphes in EDM4hep, with post-processing in FCCAnalyses to calculate thrust and hemisphere energy information
- + 30,000 $B_c^+ \to \tau^+ \nu_\tau$ after filtering (filter keeps events with a B_c^+ produced in hadronisation)
 - + $\tau^+ \rightarrow 3\pi \bar{\nu}_{\tau}$ generated via TAUHADNU model
- Inclusive $Z^0 \rightarrow q \bar{q}, c \bar{c}, b \bar{b}$ 10, 5, 10 million respectively
 - MVA studies (see later) combine these into a single 1 million event training sample using Z^0 branching fractions
 - Background rejection then tested using full samples


$E^{\max/\min/\text{diff}}$ - clear separation for $B_c^+ \rightarrow \tau^+ \nu_{\tau}$

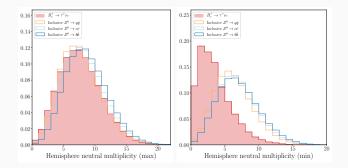
6



- $\cdot\,$ More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average


$E_n^{\max/\min}$ - more power in min. E hemisphere (mostly signal side)

- \cdot More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average



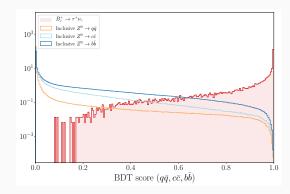
- Non-signal sides are similar in terms of charged particle content
- Signal side slightly lower in multiplicity, since we only have three charged tracks in signal decay

$M_n^{\max/\min}$

- Non-signal sides are similar in terms of neutral particle content
 - Neutral particles are charge-zero objects reconstructed in PFlow
- Signal side quite a bit more quiet

Multivariate analysis

- Use hemisphere energy information to distinguish $B_c^+ \to \tau^+ \nu_\tau$ from $Z^0 \to q\bar{q}, c\bar{c}, b\bar{b}$
- Create combined background sample of 1 million events using Z^0 PDG branching fractions
- Use *XGBClassifier* from *xgboost* package with:
 - \cdot n_estimators = 400
 - learning_rate = 0.3
 - max_depth = 3
 - All other hyper-parameters set to defaults
- Split samples into A and B, and train two BDTs (A and B)
 - $\cdot\,$ Apply BDT A (B) to sample B (A) to get predictions for full sample


ROC AUC and feature ranking

1.0 ROC A (area = 0.997)	Variable	Feature importance
ROC B (area = 0.997) 0.9 50/50	E^{min}	0.419
tion	E_n^{min}	0.159
8.0 grdsground rejection	E_c^{min}	0.142
pun 0.7	E^{\max}	0.097
	E_c^{\max}	0.0473
80.6	M_c^{min}	0.036
	E_n^{\max}	0.035
0.5	M_c^{\max}	0.025
0.5 0.6 0.7 0.8 0.9 1.0 Signal efficiency	M_n^{min}	0.024
	M_n^{\max}	0.016

• Lower energy hemisphere dominates, but also contributions from charged and neutral sub-totals and the maximum hemisphere energy

BDT score distributions

- Reject all $q\bar{q}$, $c\bar{c}$, and $b\bar{b}$ background events (in their respective samples) with BDT > 0.997 cut
 - $\cdot 10^7$ -level rejection, as samples are 5-10 million in size
 - $\cdot q\bar{q} > c\bar{c} > b\bar{b}$ in terms of rejection power
- The same BDT cut is 60% efficient on $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ signal

Signal purity estimate

- Assume $5\times 10^{12}~Z^0$ in FCC-ee operation
- With $\mathcal{B}(Z^0 \rightarrow \text{hadrons})$ = 69.9%, leads to 7.0×10^{12} inclusive background decays
- $N(B_c^+ \rightarrow \tau^+ \nu_{\tau})$ = 237,000 using the following factors

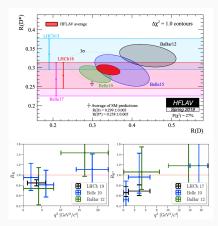
Factor	Value		
$N(Z^0)$	5×10^{12}		
$\mathcal{B}(Z^0 \to b\bar{b})$	0.1512		
B_c^+ production rate	7.9×10^{-5} [1501.00338(NRQCD)]		
$\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau)$	0.0236		
$\mathcal{B}(\tau^+ \to \{3\pi, 3\pi\pi^0\}\bar{\nu}_\tau)$	0.14		

- Signal purity before any selection is thus 3×10^{-8} .
- The Input marked in orange has to be carefully looked at.

Signal purity estimate

- \cdot Let's target 10,000 signal events with 10,000 background (50% purity) for a $\sim 1\%$ precision ${\cal B}$ measurement
- Total background rejection required: 7.0×10^8
- \cdot Total signal efficiency required: 4.2%
- BDT achieves 10^7 rejection for 60% signal efficiency:
 - Brings us from 3×10^{-8} to 20% purity (another factor 2.5 in purity needed)
 - Further factor of 70 in background rejection needed
 - $\cdot\,$ Can tolerate an additional signal efficiency of $7\%\,$
- Selections based on specific signal properties $(3\pi$ vertex quality, resonant structure, PV separation) to be studied to understand additional background rejection capabilities

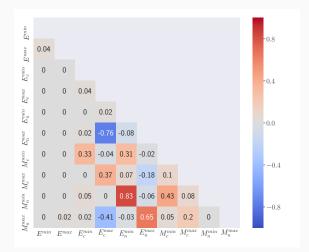
Conclusion & next steps


- Event-level hemisphere energy information provides good discrimination for missing energy mode $B_c^+ \rightarrow \tau^+ \nu_{\tau}$
- Larger background and signal samples to be generated, allowing rejection to be better understood
- Most dangerous physics background is $B^+ \to \tau^+ \nu_\tau$ will study this vs. signal in dedicated manner
 - + B^+ lifetime is 3 times larger than B_c^+ , so τ vertex separation from PV will be an important discriminator
- Investigate the best way to normalise the measurement.
- Investigation of possible improvements to the theory inputs.
- Preparation of the phenomenology interpretation.

tie Backup Sides

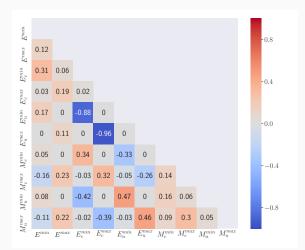
Flavour anomalies

Tensions observed in the data in both neutral currents $b \to s\ell^+\ell^-$ and charged ones $b \to c\ell^+\nu$. Not clear yet if this is a sign of NP or not. Yet...


Note : tensions seen in both LU tests + angular analyses.

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
$S_1 = (3, 1)_{-1/3}$	*	~	*
$R_2 = (3, 2)_{7/6}$	×	~	*
$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	*
$S_3 = (3,3)_{-1/3}$	~	×	×
$U_1 = (3, 1)_{2/3}$	~	~	V
$U_3 = (3,3)_{2/3}$	~	×	×

Table 1: Summary of LQ models which can accommodate $R_{K^{(\ast)}}$, $R_{D^{(\ast)}}$ and both. Table based work from 1808.08179.


Variable correlations - $B_c^+ \rightarrow \tau^+ \nu_{\tau}$

• Some strong correlations but also quite a lot of mutual information

Variable correlations - inclusive $Z^0 \rightarrow q\bar{q}$ (q = u, d, s)

• Differences in correlation structure compared to signal (similar in $c\bar{c}$ and $b\bar{b}$, see backup slides)

$$f_c \cdot \mathcal{B}(B_c^- \to J/\psi \,\mu^- \overline{\nu}) = \begin{cases} (5.04 \pm 0.11 \pm 0.17 \pm 0.18) \cdot 10^{-5} & (7 \,\text{TeV}) \\ (5.09 \pm 0.06 \pm 0.21 \pm 0.11) \cdot 10^{-5} & (13 \,\text{TeV}) \end{cases}$$

Using the average of the theoretical prediction $\mathcal{B}(B_c^- \to J/\psi \mu^- \overline{\nu}) = (1.95 \pm 0.46)\%$, where the uncertainty is given by the standard deviation derived from the distribution of the models, we determine

$$\begin{aligned} \frac{f_c}{f_u + f_d} &= (3.63 \pm 0.08 \pm 0.12 \pm 0.86) \cdot 10^{-3} \text{ for 7 TeV}, \\ \frac{f_c}{f_u + f_d} &= (3.78 \pm 0.04 \pm 0.15 \pm 0.89) \cdot 10^{-3} \text{ for 13 TeV}, \end{aligned}$$

where the first uncertainties are statistical, the second systematic, and the third due to the theoretical prediction of $\mathcal{B}(B_c^- \to J/\psi \mu^- \bar{p})$. There is a small dependence on the transverse momentum of the B_c^+ meson, but no dependence on its pseudorapidity is observed. We also report

$$f_c = \begin{cases} (2.58 \pm 0.05 \pm 0.62 \pm 0.09) \cdot 10^{-3} & (7 \text{ TeV}) \\ (2.61 \pm 0.03 \pm 0.62 \pm 0.06) \cdot 10^{-3} & (13 \text{ TeV}) \end{cases},$$