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Introduction

Within the assumption of homogeneity and isotropy, the background spacetime metric
is determined by one single function of time, the scale factor a(t).

ds? = —df® + &(t)ydx'dx  z+1=ap/a(t)
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Introduction
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Introduction
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Introduction

@ The expansion rate of the Universe is compatible with a cosmological constant —
ACDM.

@ This model has two basic theoretical problems: ‘fine tuning’ and 'coincidence’ :
pa =~ (2.5 x 1072eV)* and z, ~ 0.3.

@ Other models, e.g. scalar field dark energy (quintessence, k-essence, modified
gravity etc.) may lead to indistinguishable background evolution.

@ At the last scattering redshift DE was most probably irrelevant. Therefore it enters
CMB anisotropies mainly via the background evolution, i.e. the distance to the last
scattering surface (see Vonlanthen et al. [arXiv:1003.0810]).

@ In this talk | shall show how with the help of matter clustering observations, we can
test different dark energy models beyond their expansion law.

Ruth Durrer (Université de Genéve, DPT & CAP) Testing DE with LSS April 13, 2021 6/32



Introduction

The CMB

CMB sky as seen by Planck

T(n) =>" amYem(n)
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The Planck Collaboration:
Planck results 2018
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Introduction

M. Blanton and the Sloan Digital Sky Survey Team.
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Galaxy power spectrum from the Sloan Digital Sky Survey (BOSS)
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Galaxy surveys ~

matter density fluctuations,
biasing and redshift space
distortions.
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Introduction

But...

@ We have to take fully into account that all observations are made on our past
lightcone which is itself perturbed.
We see density fluctuations which are further away from us, further in the past.
We cannot observe 3 spatial dimensions but 2 spatial and 1 lightlike, more
precisely we measure 2 angles and a redshift.
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potential.

@ Not only the number of galaxies but also the volume is distorted.

@ The angles we are looking into are not the ones into which the photons from a
given galaxy arriving at our position have been emitted.

@ For small galaxy catalogs, these effects are not very important, but when we go
outto z ~ 1 or more, they become relevant. Already for SDSS BOSS which goes
out to z ~ 0.7 (BOSS) or DES which goes to z ~ 0.8.

@ But of course much more for future surveys like DESI, Euclid, LSST, SKA and
WFIRST.
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Cosmological distances

In a Friedmann Universe the (comoving) radial distance is
Z dz dz’

1 Z
riz) = = — .
@ o H(Z) HO/o V(T + 2P +Qx(1 + 22 +Qn + - --

In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
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In cosmology we infer distances by measuring redshifts and calculating them, via this
relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(z?), for z < 1. At larger redshifts,
the distance depends strongly on Qk, Qa,---.
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relation. The result depends on the cosmological model.
Depending on the observational situation we measure directly r(z) or

da(z) = ﬁm(r(z)) the angular diameter distance
a(z) = (14 2)xx(r(2)) the luminosity distance.

At small redshift all distances are d(z) = z/Hy + O(z?), for z < 1. At larger redshifts,
the distance depends strongly on Qk, Qa,---.

@ Whenever we convert a measured redshift and angle into a length scale, we make
assumptions about the underlying cosmology.
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Very large scale galaxy surveys

If we convert the measured correla-
tion function £(0, z1, z2) to a power
spectrum, we have to introduce a
cosmology, to convert angles and
redshifts into length scales.

r(z1, 22, 0) (K=0)

\/rf +r2 —2nr; cos .

n=ria) = 7

(Figure by F. Montanari)

Ruth Durrer (Université de Genéve, DPT & CAP)

£(6) 62

£0r(0,21,25)] 6°

2,=2,=0.7
0.035r T T T T
0.03ck Observed 1
0.025F
0.02CK
0.015F
0.01Cr
0.005F
0.00Ch n n =
0 4 6 8 10
0 [deg]
2,=2,=0.7
0.035 T T T
0.03Cf True Q,, = 0.24
0.025¢ Wrong Q, = 0.3
0.02¢F Wrong Q, = 0.5
0.015F
0.01Cp
0.005F

0.00cE

Testing DE with LSS

of

r [Mpc/h]

April 13, 2021

12/32



Large scale galaxy surveys

We now consider fluctuations in the matter distribution and in the geometry first to
linear order. (See Yoo et al. 2009; Yoo 2010; Bonvin & RD 2011; Challinor & Lewis,
2011)
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linear order. (See Yoo et al. 2009; Yoo 2010; Bonvin & RD 2011; Challinor & Lewis,
2011)

For each galaxy in a catalog we measure
6,9,2z) =(n,2) (+ info about mass, spectral type...)

We can count the galaxies inside a redshift bin and a small solid angle, N(n, z) and
measure the fluctuation of this count:

_ N(n,z) - N(2)
A(n,z) = 7/?/(2)
£0,2,7') = (A(n, 2)A(n, 2')) n.-n =cosf.

This quantity is directly measurable.
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
density fluctuations from scalar perturbations to 1st order as function of the observed

redshift z and direction n

A(n,z) = Dy+(1 +53)¢+\U+% [d>+a,(v-n)]

H 2-5s e L
+(H2+r(z)7{+55) <w+v-n+ ! dr(d>+\ll)>

2-5s (M@ [r(z)—r B
21(2) A ar |: p No(®+ W) —2(d + \U)} .

( Bonvin & RD ’11, Challinor & Lewis ’11)
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The total galaxy density fluctuation per redshift bin, per sold angle

Putting the density and volume fluctuations together one obtains the galaxy number
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( C.Bonvin & RD ’11, Challinor & Lewis ’'11)
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Redshift space distortions in the BOSS survey

(from Lange et al. '21)
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The angular power spectrum of galaxy density fluctuations

For fixed z, we can expand A(n, z) in spherical harmonics,

=S an(@Yinl),  C(2.2) = (@n(2)ain()

£0,z,2") = (A(n, 2)A(n, 2')) = 417 Z(2é+ 1)Ce(z, Z2")Ps(cos 0)
4

cosf=n-n’
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 0.1, Az = 0.01
(from Bonvin & RD ’11)
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The transversal power spectrum

Contributions to the transverse power spectrum at redshift z = 3, Az = 0.3
(from Bonvin & RD ’11)
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The radial power spectrum

0.1

0.01

10+)/2 7

0.105  0.110 0.115 0120 0.125

0.130

0.001 e N

10+D/27C

0.001

107 ~

10+D/27C
4

10°° ~

«~ o
S~
107° \ /'\\\

1.0 11 12 13 14
Ruth Durrer (Université de Genéve, DPT & CAP)

0.001
5x107

1x107
5x107° Fant

10+1)/2 7 C,

1x107°
5x107° ~~o

30 32 34 36 38

The radial power spectrum C,(z, z')
for ¢ =20

Left, top to bottom: z = 0.1, 0.5, 1,
top right: z =3

Standard terms (blue), C;™"™ (magenta),
CPoPPRr (cyan), €9 (black),
(from Bonvin & RD ’11)

Testing DE with LSS April 13, 2021

20/32



Measuring the lensing potential with Euclid

Well separated redshift bins measure mainly the lensing-density correlation:
(A(n,2)A(N,2) = (AL(n,2)5(n',2)) z> 2

Al(n, z) = (2 - 55(2))k(n, 2)
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Testing modified gravity with the lensing potential
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Testing modified gravity with the lensing potential
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Neglecting the lensing potential biases cosmological parameters
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Measuring the relativistic terms via cross-correlations of the Vera Rubin
Observatory LSST galaxy survey

standard parameters fixed
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Measuring the relativistic terms with Quasar-Ly-« cross correlations
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Measuring the growth rate of perturbations

@ The growth rate of perturbations is very sensitive to DE.

@ A cosmological constant is the only form of DE which exhibits absolutely no
clustering.

@ Redshift space distortions are most sensitive to the growth rate. hence to measure
it we need good redshift resolution — a spectroscopic survey.

@ Even though 'lensing convergence’ is not relevant for std cosmological parameter
estimation with spectroscopic surveys, it does significantly affect the growth rate.
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Standard parameter estimation from Vera Rubin Observatory (LSST)
and SKA2 galaxy number counts
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Growth rate estimation from SKA2 galaxy number counts

The growth rate is best estimated with RSD. However, in the k-power spectrum lensing
is not easily included.

We used the correlation function to estimate the growth rate with the public code
'COFFE’ (https://github.com/JCGoran/coffe, Tansella, Jelic-Cizmek, Bonvin, RD, 2018).
Including lensing, SKA2 will be able to determine it at the few % level (2 - 3% in a
Fisher analysis).

f(z) = f(z)os(2) (no lensing / )
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(Lepori, Jelic-Cizmek, Bonvin, RD 2020)
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Conclusions

@ So far cosmological LSS data mainly determined £(r), or equivalently P(k) or
B(ki, k2, ks) etc. These are easier to measure (less noisy) but:
e they depend on a fiducial input cosmology converting redshift and angles to
length scales. This complicates especially the determination of error bars in
parameter estimation.
e |t is not evident how to correctly include lensing.
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@ Future large & precise 3d galaxy catalogs like Euclid, DESI, SKA, LSST etc. will
be able to determine directly the measured 3d correlation functions and spectra,
£(0,z,2")and Cy(z,2') and by, ¢,,0,(21, 22, Z3) etc from the data.

@ These 3d quantities will of course be more noisy, but they also contain more
information.

@ These spectra are not only sensitive to the matter distribution (density) but also to
the velocity via ( ) and to the perturbations of spacetime
geometry (lensing) .
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momentum tensor and the geometry from LSS observations.

@ We can test modified gravity models by measuring the lensing potential ¢ + W.

@ We can measure the growth factor from redshift space distortions in spectroscopic
surveys which helps us to distinguish dark energy models.

@ Using different populations of galaxies / different tracers we can reduce cosmic
variance to have access to the gravitational potential at very large scales.

@ To correctly interpret our date a relativistic and accurate theoretical modelling is
crucial.
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Comparing DESI, LSST and SKA2

(The bias is marginalized over.)
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