ESCAPE European Science Cluster of Astronomy & Particle physics ESFRI research Infrastructures

ConCORDIA

Cristiano Bozza - UNISA & INFN – 22/1/2021

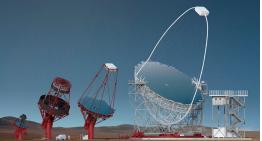
On behalf of Luisa Arrabito, C.B., Johan Bregeon, Rosa Coniglione, José Luis Contreras, Matthias Fuessling, Luigi Fusco, Gareth Hughes, Daniel Nieto, Jutta Schnabel, Bernardino Spisso, Simona Maria Stellacci, Andrei Tsaregorodtsev, Daniele Zito

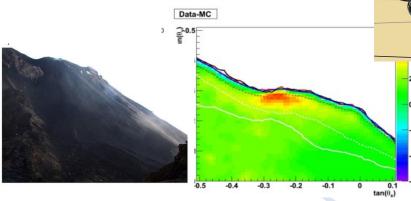
ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

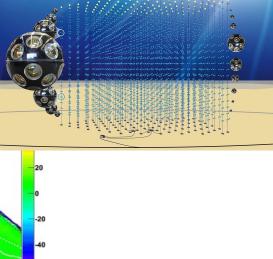
ConCORDIA – What it is

Containers for CORSIKA on DIRAC

- Set of turnkey containers for CORSIKA simulation hosted on DIRAC
- GUI/scripting environment to quickly tweak-tune new CORSIKA setups
- Use DIRAC for integration with ESAP platform (WP5)
 - + integrate storage with RUCIO (WP2) ?




Motivation

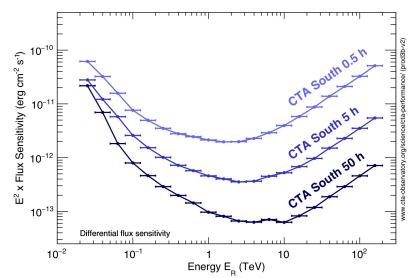

To provide turnkey tools for cosmic ray simulation in a wide range of research and application fields

- Air-shower experiments
- Underwater Cherenkov neutrino detectors
- Under-ice Cherenkov neutrino detectors
- Muography of large objects

To help and foster comparison and optimization of simulations to match data

Cristiano Bozza - UNISA & INFN

Funded by the European Union's Horizon 2020 - Grant N° 824064


Use cases: CTA

Simulate the response of CTA for IRF generation

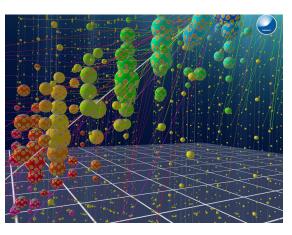
- Instrument response functions (IRFs) derived from Monte Carlo simulations are produced for the data analysis steps. IRFs are
 required for the transformation of CTA data products (e.g. photon lists, data, and atmospheric quality, and instrument monitoring
 information) to CTA science products (e.g. sky maps, light curves, spectral distributions). For all use cases related to gamma-ray
 astronomy, the required IRFs are typically:
 - · effective areas vs true and reconstructed energy
 - the energy dispersion matrix
 - · the gamma-ray point-spread function vs energy
 - a model for the distribution of background events vs reconstructed energy and direction.
 - IRFs are provided with an explicit time dependency or for a period of stable observing conditions.

MC productions for the estimation of systematic uncertainties

 The aim for CTA is to provide IRFs which allow the reconstruction with well determined systematic uncertainties inside the required values. Systematic uncertainties are generally functions of different parameters (e.g., of telescope elevation, level of night sky background or event energy) and vary with

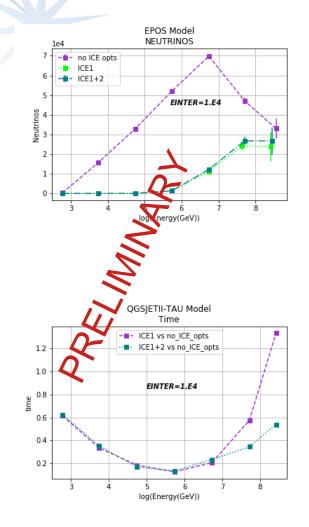
http://www.cta-observatory.org/science/cta-performance/ (version prod3b-v2)

time. 'Bracketing' IRFs, with simulation model parameters varied inside their expected uncertainties (e.g., by varying the uncertainties, changing the hadronic interaction model, using different methods for the derivation of the simulation model parameters) are used to estimate the systematic uncertainties.



Use cases: KM3NeT

Assessment of detector performances

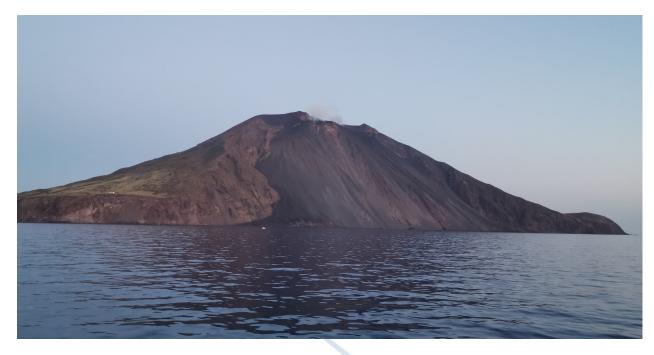

- Detailed shower profile
 - Propagate particles through water
 - Obtain Cherenkov radiation in water towards detector
 - Simulate photon counts (hits) in the detector. Depends on the particles, direction and energy produced

https://www.km3net.org

Computation of Instrument Response Function of the detector

- Mostly the Effective Area
- Repeatedly run simulations Detectors are being incrementally built: also optimize computing resource usage

Funded by the European Union's Horizon 2020 - Grant N° 824064



Use cases: Muography

Investigation of deep structure of volcanoes and faults

- Thick objects penetrated by high-energy muons (100 TeV and beyond)
 - Large uncertainty on absolute muon flux comparison of models needed
 - Affects density estimation
 - Rock type/magma/conduit identification

Development

All source on gitlab.in2p3.fr

https://gitlab.in2p3.fr/escape-corsika/demo-containers-for-corsika/-/tree/dirac_dev/

escape-corsika > Demo containers for CORSIKA > Repository				
dirac_dev v demo-conta	iners-for-corsika / 🕂 🗸	History Find file W	eb IDE 🗶 🗸 Clone 🗸	
test LFS add for corsika6.sim Luigi Antonio Fusco authored	-		5989ace3 🔓	
Name	Last commit		Last update	
🖿 build_images	Fixing typo		2 months ago	
🖿 dirac	corrected typo in corsika.py		1 week ago	
prebuilt_images	test LFS add for corsika6.simg.tar		10 hours ago	
♦ .gitattributes	test LFS add for corsika1.simg.tar via shell		1 day ago	
🚸 .gitignore	Adding .gitignore		7 months ago	
C README	Initial commit		9 months ago	
M* README.md	Fixing typo		2 months ago	

Cristiano Bozza - UNISA & INFN

Available containers

~20 pre-built containers

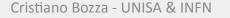
WebGUI used for building Docker and Singularity images

escape-corsika > Demo containers for CORSIKA > Repository					
dirac_dev v demo-containers-for-corsika / prebuilt_images / + v History Find file Web IDE 🛃 v Clone v					
test LFS add for corsika6.simg.tar 5989ace3 1 Luigi Antonio Fusco authored 10 hours ago 1 1 1					
Name	Last commit	Last update			
 B build1.tar LFS	Testing LFS on *.tar	7 months ago			
Build10.tar LFS	Adding remining docker images	7 months ago			
Build11.tar LFS	Adding remining docker images	7 months ago			
Build12.tar LFS	Adding remining docker images	7 months ago			
Build13.tar LFS	Adding remining docker images	7 months ago			
Build14.tar LFS	Adding remining docker images	7 months ago			
build15.tar LFS	Adding remining docker images	7 months ago			
build16.tar LFS	Adding remining docker images	7 months ago			
🛯 build17.tar 🛛 LFS	Adding remining docker images	7 months ago			

Cristiano Bozza - UNISA & INFN

Funded by the European Union's Horizon 2020 - Grant N° 824064

Running containers on DIRAC


Run the docker DIRAC client (diracgrid/client:egi) binding the cloned git repo

Python job launcher

corsika.py \$CONTAINER ID \$CORSIKA RUN INPUT

corsika.py -*h* returns the help, with the ID description

Irootgabf9adf8db2 dfrac]# python corstka.py -h
usage: corstka py -corstka.py -corstka.py -corstka constancers.i. corstka inputs>
corstka containers are available with the following CORSIKA compilation options:
ContainerID: 1; A0: [], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 2; AD: [1a - Cherenkov version, 1 - Photons counted only in the step where emitted , 1 - Emission angle is wavelength independent], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS
LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 3; A0: [1d - Auger Cherenkov longitudinal distribution], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS
LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 4; A0: [], DG: 1 - horizontal flat detector array , EHIM: 1 - DPMJET-III (2017.1) with PHOJET 1.20.0, LEHIM: 3 - URQMD 1.3cr
ContainerID: 5; A0: [4a - NUPRIM primary neutrino version with HERWIG], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 6; A0: [], DG: 1 - horizontal flat detector array , EHIM: 3 - VRQMD 1.3cr
ContainerID: 7; A0: [7b - UPWARD particles version], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 10; A0: [7a - CURVED atmosphere version], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 10; A0: [7a - CURVED atmosphere version], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 10; A0: [7a - CURVED atmosphere version], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 11; A0: [1a - Cherenkov version, 3 - No Cherenkov light distribution at all, 1 - Emission angle is wavelength independent], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
ContainerID: 11; A0: [1a - Cherenkov version do follow motion of source on the sky], DG: 1 - horizontal flat detector array , EHIM: 2 - EPOS LHC , LEHIM: 3 - URQMD 1.3cr
Con

Building containers

Web GUI for container generation

PARAMETERS:	b		
Energy Hadronic Interaction Model		*	
Low Energy Hadronic Interaction Mo	odel	~	
Detector Geometry		*	
ADDITIONAL OPTIONS:			
1a - Cherenkov version:	1 - Photons counted only in the step where emitted [DEFAULT]		
	\bigcirc 2 - Photons counted in every step down to the observation level (compatible with old versions		
	3 - No Cherenkov light distribution at all		
	1 - Emission angle is wavelength independent [DEFAULT]		
	2 - Emission angle depending on wavelength		
1b - Cherenkov version using Bernlohr IACT routines (for telescopes):	1 - Particles at detector level not stored to IACT file [DEFAULT]		
	2 - Particles at detector level are stored to IACT file		
1c - apply atm. absorption, mirror reflectivity & quantum eff.:	Ic - apply atm. absorption, mirror reflectivity & quantum eff.		
1d - Auger Cherenkov longitudinal distribution:	Id - Auger Cherenkov longitudinal distribution		

Building containers

Web GUI for container generation

PARAMETERS:	Server Response
3 - NEXUS 3.97	OK
2 - FLUKA	•
Detector Geometry	
1 - horizontal flat detector array [DEFAULT]	
2 - non-flat (volume) detector geometry	
3 - vertical string det	
	Build Run
Cristiano Bozza - UNISA & INFN	Funded by the European Union's Horizon 2020 - Grant N° 824064

Running containers

Web GUI to manage ConCORDIA jobs

INPUT:		Server Response
RUNNR - RUN NUMBER:	1	
EVTNR - NUMBER OF FIRST SHOWER EVENT:	1	Run Executed
NSHOW - NUMBER OF SHOWERS TO GENERAT:	1	
PRMPAR - PARTICLE TYPE OF PRIM. PARTICLE:	14	ОК
ESLOPE - SLOPE OF PRIMARY ENERGY SPECTRUM:	-2.7	
ERANGE_MIN - ENERGY RANGE OF PRIMARY PARTICLE (MIN):	1.e+5	
ERANGE_MAX - ENERGY RANGE OF PRIMARY PARTICLE (MAX):	1.e+5	
THETAP_A - RANGE OF ZENITH ANGLE (DEGREE):	20	
THETAP_B - RANGE OF ZENITH ANGLE (DEGREE):	20	
PHIP_A - RANGE OF AZIMUTH ANGLE (DEGREE):	-180	
PHIP_B - RANGE OF AZIMUTH ANGLE (DEGREE):	180	
SEED1_A - SEED FOR 1. RANDOM NUMBER SEQUENCE:	1	
SEED1_B - SEED FOR 1. RANDOM NUMBER SEQUENCE:	0	
SEED1_C - SEED FOR 1. RANDOM NUMBER SEQUENCE:	0	
SEED2_A - SEED FOR 2. RANDOM NUMBER SEQUENCE:	2	
SEED2_B - SEED FOR 2. RANDOM NUMBER SEQUENCE:	0	
SEED2_C - SEED FOR 2. RANDOM NUMBER SEQUENCE:	0	Build Run
OBSLEV - OBSERVATION LEVEL (IN CM):	100.e+2	

Cristiano Bozza - UNISA & INFN

ConCORDIA on ESAP

SAP | Science Analysis | Platform

THE INTERWARE

ESCAPE

DIRAC

DIRAC is an external service linked to ESAP

Authentication on VOs via EGI certificates

RUCIO integration for storage of partial results or official simulations

Funded by the European Union's Horizon 2020 - Grant N° 824064

Cristiano Bozza - LINISA & INEN

Container distribution

Containers will be published on Zenodo

🖲 Available via ESAP

- Each container comes as:
 - Highlights of physics output documented through small productions
 - Computing resource usage estimates
 - Storage resource usage estimates (for output)
- Documentation to assist users in picking best containers for their applications:
 - Hadronic interaction data models
 - Cherenkov radiation
 - Options (mostly to enhance speed)

Status and outlook

Stand-alone web GUI for container creation N

- igle Scripting access for DIRAC $\sqrt{}$
- Web GUI access for DIRAC #
- igle Container specifications (CTA, KM3NeT) $\sqrt{}$
- Container data quality and performance assessment #
- ESAP integration #
- RUCIO integration #
- Workflow documentation via JSON files #

