

From ATF2 to ATF3

A. Faus-Golfe on behalf of ATF extended TB

ILC-IDT 2020

8 December 2020

Outline

ATF2 current status Review process

ATF2 final focus test beamline

- ATF2 and ILC implementation plan
- > ATF3

ATF2 the ILC FFS test

ATF/ATF2: Accelerator Test Facility

Courtesy: N. Terunuma

The context

FFS is among the most challenging sections of a linear collider

- > Very-large β and the presence of nonlinear elements make it **extremely sensitive** to **imperfections as:**
 - Wakefields introduce energy spread, bunch head-to-tail distortions, and amplify transverse deflections
 - Magnets misalignment introduce dispersion, beta-beating, orbit deflections, transverse coupling, ...
 - Beam jitter unavoidably cause betatron oscillations that propagate all the way to the IP, etc.
- In ILC and CLIC, the much shorter bunch length and the much larger beam energy make the situation "simpler"
- ATF2 tackles its critical task with two major disadvantages w.r.t. its bigger brothers:
 Bunch length is much longer: 7 mm vs 300 µm, about 25 times larger
 Beam energy is significantly lower: 1.3 GeV vs 125 GeV, about 100 times smaller
- Measurement of the nanobeam sizes involves a complex device: Shintake monitor

The contex FFS is

Very-large β an imperfections

- Wakefields
- Magnets mi
- Beam jitter

In the ILC and C make the situatio

ATF2 tackles its - Bunch len - Beam ene

> Measurement of th

The perfect storm in a glass of water...

r collider:

extremely sensitive to

fy transverse deflections ansverse coupling, ... to the IP, etc.

ch larger beam energy

bigger brothers:

imes smaller

8 December 2020

ATF2 goals

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : 37 nm → ILC 7.7 nm (ILC250)
 - Achieved 41 nm (2016)

Goal 2: Develop a few nm position stabilization for the ILC collision

 FB latency 133 nsec achieved (target: < 366 nsec)

60

-0.1 0.0 Δ*E*/*E* [%] 0.1

*²~2.0

1

● positon jitter at IP: 106 → 41 nm (2018) (limited by the BPM resolution)

Intensity dependence studies

Ultra low β^* studies

June 2019 switch from 30° mode to 174° mode rruption (~24 hours) SUBSECTION STATE S

FB on

Instrumentation R&D

Incoherent Diffraction **Cherenkov Radiation** (ChDR)

ILC-IDT 2020

Intensity dependence studies (wakefields) Beam size History

But small beam sizes were obtained with beam intensities of 0.5-1.5 10⁹ e⁻/bunch (10¹⁰ design value)

Reduced optics aberration conditions

Design optics $(\beta_x * x \beta_y *)$ **not tested !!!**

e: Results achieved with beam stabilization in two-bunch mode

ATF2 review

https://agenda.linearcollider.org/event/8626/

International Review Panel ATF Review 2020 K. Oide (chair)- KEK-CERN Image: 29 Sep 2020, 19:30 → 30 Sep 2020, 00:00 Asia/Tokyo V. Shiltey - FNAL https://zoom.us/j/95322225259 (Zoom) Z. Zao - SARI Description Charge 1: Evaluate the scientific results at ATF/ATF-2. Charge 2: Evaluate future ATF operation for LC R&Ds T. Pieloni - EPFL Charge 3: Evaluate future ATF operation (other than LC) M. Kato - Hiroshima U. 😕 ATF-Papers-Refere... 😕 ATF-PhD-v2020081... 🏳 ATF_Review_Repor... 🔑 Report for ATF Revi... ATF-Papers-Conf-P... **TUESDAY. 29 SEPTEMBER** → 20:05 Welcome 20.00 **③**5m Detailed info on: Speaker: Masar 21:30 → 21:55 ATF2 ultra-low beta optics "ATF Report Speaker: Renjun Yang (CERN) 20:05 → 20:15 Timeline () 10m close-outog October Speaker: Nobuh ATF2 ultra-low beta ... 2020", October A Intro-timelin 2020 21:55 → 22:20 ATF2 future R&D Speaker: Toshiyuki Okugi (KEK) 20:15 → 20:40 ATF Introduction KEK report 2020-4 Speaker: Shider ATFreview2020_ok... CERN-ACC-2020-ATFIntrolns 22:20 → 22:45 R&D other than LC 0029 Speaker: Alexander Aryshev (KEK) → 21:05 ATF2 small bee 20:40 @25m R&D other than LC.... IJClab 2020-001 Speaker: Kiyosi A Smallbeam 22:45 → 23:10 Operational status and concerns Speaker: Nobuhiro Terunuma (KEK) 21:05 → 21:30 ATF2 stabilizat @ 25m Deration-2020091... Speaker: Philip FONT_ATF2r 23:10 → 00:00 Discussions

ATF2 close-out l

Q1: Scientific results at ATF/ATF2

Outstanding and unique results achieved in ATF/ATF2:

- \checkmark The smallest spot size, 40 nm, in any accelerators.
- ✓ Intra-train bunch orbit feedback (FONT).
- Vertical emittance in the ring, 4 pm, smallest at the beginning of the century.

Q2: Future ATF operation for LC R&Ds

- Intensity dependent effects on the spot size
- \triangleright Optical aberrations <<< β_x*
- Beam halo and collimation
- Smaller spot sizes with higher chromaticities

Q3: Future ATF operation (other than LC)

- ATF team to expand this effort internationally (conflict with the preparation of the ILC).
- KEK should not consider any shutdown before exploring the full scientific possibility of ATF

Overview- Charge questions

Pioneering developments on various accelerator components:

- $\checkmark\,$ Fast extraction kickers with rise/fall time less than 3 ns
- ✓ Laser wires measuring 1 μ m beam size
- ✓ Cavity BPMs with 20 nm resolution
- ✓ Single- and multi- OTR/ODR beam profile monitors

Other components which will benefit the ILC preparation:

- Polarized e- source, transport, and storage in the DR
- Beam collimation study using fancy devices such as using a laser or another beam
- Beam feedback within one turn of the ring circulation to simulate a fast feedback at the extraction of the ILC DR

Remarks

- Contradiction between ILC preparation plan for the ILC in coming years and operation history of ATF in the past five years
- Cannot judge the feasibility of ILC future plan of the ILC, but still expresses heavy concern on the situation.

ATF2 close-out II

Timeline

Refine the goal of ATF3 whether to cover other subjects presented in the review.

ATF Introduction, Instrumentation R&Ds

Improve the instrumentation with AI technology application

ATF2 small beam, Wakefield

- Develop a long L* optics to evaluate optical aberrations.
- Try to squeeze βx* for a better understanding of the optics

ATF2 ultra-low beta optics

- Continue the exploration of the ultra-low β optics and scaling of beam size with different optics with reduced $β_x$ value (larger aberrations).
- Improve stability of beam size measurements (IPBSM) to resolve beam sizes even below 40 nm.
- Explore the method with a longer L* optics to keep the beam size resolution.
- Small beam tuning (below 50 nm) with nominal optics should be demonstrate to possibly demonstrate the octupole effectiveness

ATF2 stabilization (FONT)

Give priority (and additional beam time) to allow optimization of the feedback system performance and detailed study of long-term beam trajectory control

ATF2 close-out III

ATF2 future R&D

- Develop a detailed resource-loaded plan for the ILCrelated studies in the ILC preparatory period, under the given limited operation budget, availability of experts, and beam operation time.
- Consider an opportunity to carry out SC elements (magnets and cavities) in some other facility with

Operational status and concerns

- Consider merging activities at ATF, STF, cERL, etc., and flexibly use the limited budget and manpower
- Continue the efforts to get funds from outside of KEK
- > Pay full attention by the entire KEK members

R&D other th

existing cryog

Based on this and with the support of the KEK DG we have started to plan the next operation years of ATF2 and the future ATF3

- Continue the el other than ILC. The calling for proposals should be open and international
- Try to find more applications which require the flatness of the beam at ATF.
- Start to think about a possibility to convert ATF to a flexible, multi-purpose facility as exploring the possibility to collaborate with other facilities, institutes or universities.

ATF3 objective and collaboration:

Based on the achievements of the ATF2, a follow-on upgraded facility **"ATF3"** for pursuing R&D to **maximize the luminosity potential of ILC** is necessary.

Translated in English for your reference. Detailed budget profile was omitted here but presented to DG. N. Terunuma

ATF3 objective and collaboration:

Implementation Plan

Translated in English for your reference. Detailed budget profile was omitted here but presented to DG. N. Terunuma

Extended Technical Board N. Terunuma - KEK A. Faus-Golfe - IJClab T. Okugi – KEK P Burrows – JAL A. Aryshev – KEK M. Fukuda – KEK S. Kuroda - KEK L. Brunetti – LAPP P. Bambade – IJClab P. Karataey – RHUI S. Stapnes – CERN R. Tomas Garcia – CERN A. Latina – CERN R. Corsini - CERN G. White – SLAC K. Kubo – KEK T. Naito – KEK A. Lyapin - RHUL

ATF3 Implementation meeting Plan (Synergy with ILC-IDT WG2)

- ✓ **30 October 2020:** kickoff (Angeles) <u>https://indico.in2p3.fr/event/22743/</u>
- ✓ 6 November 2020: Vacuum and Magnets upgrade (Nobuhiro) <u>https://indico.in2p3.fr/event/22726/</u>
- ✓ 13 November 2020: CBPMs upgrade (Alexey) / beam tuning (Toshiyuki)) <u>https://indico.in2p3.fr/event/22721/</u>
- ✓ 20 November 2020: ILC preparation (Okugi), CBPMs summary (Angeles) <u>https://indico.in2p3.fr/event/22966/</u>
- 27 November 2020: 2nd order correction/wakefields (Kiyoshi), Continuous monitoring and stabilization (Laurent), IP-BSM laser upgrade (Alex) <u>https://indico.in2p3.fr/event/22871/</u>
- ✓ 4 December 2020: ultra-low beta studies (Rogelio) / Assessing ATF3 beam-dynamics driven specifications (machine design robust to static and dynamic imperfections) and DFS/WFS implementation and other tuning techniques. (Andrea) <u>https://indico.in2p3.fr/event/22947/</u>

11 December 2020: FONT Upgrade (Phil), IP-BPMs (Alex)18 December 2020: Multi-OTR (Alex)

Meetings in progress

ILC-IDT WG2: DR / BDS / DUMPS

		ĺ				EDR					
				2022	2023	2024	2025				
	Grade	Items	Technical Preparation	P1	P2	P3		FTE	budget [kUS\$]	candiate collaoration	
	В		System design : Optics optimization with magnet model							UK national LS, Cornell, LBNL	
	В		Simulation : Dynamic Aperture					2		UK national LS, Cornell, LBNL	
	В	DR optics	Normal Magnet Magnet : Magnet design					1	10		
	В		Permanent Magnet : Magnet design					2	20	UK national LS, ESS-Bilbao, BNL, LBNL	
	В		Permanent Magnet : Prototype (?)					3	600	UK national LS, ESS-Bilbao, BNL, LBNL	
	В		Simulation : Electron Cloud Instability					2	20	UK national LS, Cornell, LBNL	
	В		Simulation : lon trapping Instability					2	20	UK national LS, Cornell, LBNL	
	В	Collective effect	Simulation : Fast Ion Instability					2	20	UK national LS, Cornell, LBNL	
Damping Ring	А		System design : Orbit FB for Fast Ion Instability					1	10	DAΦNE, ESRF,	
Damping King	А		Beam test : Orbit FB for Fast Ion Instability						1000	DAΦNE, ESRF,	
	А		Fast kicker: System design; DR and LTR/RTL optics optimization					1	10	(KEK),	
	Α		Fast kicker: Hardware preparation; based on FID pulser					2	200	(KEK)	
	Α	Injection/extraction kickers	Fast kicker: System design & Prototyping ; based on induction kicker							CERN, BSS-Bilbao, SLAC	
	Α		Fast kicker: Long-term stability test at ATF					2	100	ATF (ATF3) collaboration	
	В		E-driven kicker: System design, include the induction kicker development							CERN, BSS-Bilbao	
		RF system	Prototype test						N/A	N/A	
		Wiggler Magnet	Prototype test					N/A	N/A	N/A	
	В	EDR	Engineering design of the damping ring					5	50		
	В		System design : hardware optimization, include intensity dependence simulatior	1 <mark>.</mark>						ATF (ATF3) collaboration	
	В	Final focus optics	Beam test : Intensity dependence correction							ATF (ATF3) collaboration	
	В	i mariocus optics	Beam test : 2nd order optics correction							ATF (ATF3) collaboration	
	Α		Beam test : Long-term stability test at ATF							ATF (ATF3) collaboration	
BDS, MDI	В	Final doublet (incl. Anti-solenoid)	System design (include the anti-solenoid)					2	20	BNL	
503, WD1	В	That doublet (men. Anti-solehold)	Vibration test					1,5	360	BNL	
	В	Crab cavity	System design	discussion with SCRF subgroup							
		Anti-solenoid	System design and vibration test		considered within FD package						
		Anti-DID	System design				-	consi	dered as detect	or matter	
	В	EDR	Engineering design of the BDS, MDI					5	50		
	А	17MW main dump	System design of water flow system								
	Α		System design of window sealing and remote exchange								
Beam Dump	А		System design of countermeasure for failure								
Beambamp	A/B (?)		Robustness test of window								
	В	300kW photon dump	System design								
	В	EDR	Engineering design of the beam dump					2	20		
Rank	A		nmended by KEK ILC international WG								
	В	Technical preparation, which is neces	ssary to write EDR								

ATF2 (2020-2023) : Beam tests: Long-term stability

High-order aberrations

- Design ($\beta_x^* x \beta_y^*$) & Ultra-Low- β_y^*
- 2nd order correction knobs assessment
- Energy bandwidth measurements

Wakefield evaluation and mitigation

- Upstream beam line (relatively low- β_y)
- Movable set-up mitigation techniques

Vibrations long-term monitoring system

> Jitter sources assessment

• Measurements (entrance/IP)

CBPMs calibration process upgrade

- Duration of calibration optimization
- \circ Lifetime degradation of calibration over time
- New time and phase invariant digital processing software to be developed, algorithm could first be tested on simulated data.

ATF3 (2024-2025...): System design: Hardware optimization I

Vacuum Chambers

- Most of the present EXT-FF vacuum chambers are reused /duplicated
- The standard ID beam pipe is 24 mm, but due to additional features, the special sections use different cross sections.
- Wakefields on the EXT line was not taken seriously as the beam passed once, while that on the DR was considered because of the multi-turn of 2 MHz.

Why this is needed?

System design : Hardware optimization II

Why this is needed?

System design : Hardware optimization III

IPBSM (nanometer beam size monitor)

IP-BSM is not just a laser

Why this is needed?

IP-BSM Laser current problems:

- Stability (Energy, Modes = fringe pattern)
- Laser beam parameters reproducibility and resolution
- Nd:YAG Laser aging (tuning, dust, etc)
- Laser Transport Line (LTL) and laser FF-IP tuning and optimization

Vertical Table

Laser Hut

System design : Hardware optimization IV

- Vacuum Chambers (ID beam 24 mm):
- o Bellows shielding
- Clamp Flanges (ATF-DR type)
- Cavity BPM tapering (ID 20 mm)
- Stripline BPMs
- Dipole chamber (box type replaced by simple pipe)
- Septum chambers (A, B, C)
- FONT stripline kicker
- Pumping port chamber (ID 24 mm)

- > New Magnets
- FD: QD0, QF1, SD0, SD1
- Skew sextupoles including movers
- Septum C (standard dipole)
- ZVOX (between septum B and C)

CBPMs:

- Re-installation of all CBPMs (current #24, all #32)
- Add separate fast small movers for centering and position calibration, including mechanical study, specs (~10kg load and um resolution, prioritize high-β regions)
- Electronics: analogue electronics reliable but spares needed
- Digitizers: 20-year old model, higher resolution ADCs would increase the dynamic range.

BH3X

System design : Hardware optimization V

> IP-BSM Laser:

- Nd:YAG laser replacement choice, new laser parameters
- o Start LTL, FF-IP simulation study
- Start laser stability study (energy, pointing, mode, and fringe pattern)
- $\circ~$ e-beam arrival and timing jitter

CLIC : Type 4 MBQ and stabilization system mounted on cam movers (left) and test setup including ZCMs, follower girder and local coordinate system (right).

FD vibration girder

 Girder for all the final elements coupled with a global positioning system

System design : Hardware optimization VI

- > IP-BPMs
- Re-desin towards sub-10 nm, wide dynamic range and linearity
- FONT feedback
- Multi-OTR system

Multi-OTR system

FONT feedback system

3rd ATF3 - 13 November 2020

System design : Hardware optimization VI

System design: Beam line and IP re-design

> Driven realistic beam dynamics specifications

- Realistic simulations should drive the design choices and the goals
- Jitter assessment/measurement
- Magnet errors
- Wakefields source (hardware change)
- Establish the scaling for ILC in terms of intensity

Vibration mitigation for new FD

- Instrumentation assessment
- CBPMs calibration and resolution
- Multi-OTR, screens,...
- IP Instrumentation assessment
- o IP-BSM
- o IP-BPMs

 $(\sigma_v^*)^2 = (\sigma_{v0}^*)^2 + w^2 q^2$

Beam tests ILC: Long Term Stability

- > Nominal (10 $\beta_x^* \times \beta_y^*$) optics operation routine assessment
- Automated steering procedures and basic tuning algorithms (like envisaged for ILC)
- 2nd order correction knobs assessment (sextupoles and skew, octupoles)
- Energy bandwidth measurements
- Intensity dependence / Walkefield studies and mitigation techniques (bunch length measurement)
- Vibrations long-term monitoring
- FONT feedback studies / multibunch

Beam tests ILC: High-order aberrations

- > Design ($\beta_x^* \times \beta_y^*$) optics
- > Ultra-low β_y^*
- Octupoles
- Longer L* (move FD to the right /IP towards the dump)

Beam tests ILC: Other studies

- ILC DR injection/extraction kickers long term stability
- o Fast kicker
- o E-driven kicker

Collimation issues for ILC

- $\circ \quad \text{Wakefiled impact}$
- o Design options

New wakefields setups

Passive corrugated structures

New CBPMs ideas:

- ILC type cavities with Integrated electronics from Instrumentation Technologies
- Off-the-shelf (FMB-Oxford-Instrument Technologies) triplet of CBPMs
- Low-wakefield wavegide BPMs, aperture/resolution issues to be estimated (sensitivity degrades as 1/a)

Waveguide BPMs

Hardware

HARDWARE											
	ltem	Short description	Unit Cost [k Yen]	#units	Grade	Budget [k Yen]	Budget [k CHF]	Budget [k Eu]	Human Resources (FTE)	Responsible	Interested collaborators
Injector	Klystrons					0	0	0			
Damping Ring						0	0	0			
EXT - FFS	Vaccum chamber					0	0	0			
	Shielded Bellows		300	100		30000	270	250,02			
	Taper chamber	For CBPM; ID 20mm	60	40		2400	21,6	20,0016			
	Bend chamber - Large	внзх	500	1		500	4,5	4,167			
	Bend chamber - Small	BH1X, 2X, B1, B2 and B5	100	5		500	4,5	4,167			
	Straight chambers		100	30		3000	27	25,002			
	Pump port chambers	For ID 24mm	200	30		6000	54	50,004			
	FONT kicker	Stripline kicker	500	2		1000	9	8,334			
	Septum C	à standard dipole	100	1		100	0,9	0,8334			
	Others	Attachment for the gap of CBPM conflat flange,				0	0	0			
	Magnets					0	0	0			
	Final Doublet	QD0, QF1	3000	2		6000	54	50,004			
	Final Doublet (Sext)	SD0, SF1	1500	2		3000	27	25,002			
	Skew Sextupole	Poor assembling	1500	4		6000	54	50,004			
	Movers	For Skew Sextupole	2000	4		8000	72	66,672			
		Renewal of motor drivers/controllers				0	0	0			
	Septum A, B					0	0	0			
	Septum C	Standard Dipole + PS	5000	1		5000	45	41,67			
						0	0	0			
	IP-BSM Laser system	<u>[</u>				0	0	0			
	Laser system		21000			21000	189				
	Optics upgrades		11000	1		11000	99	91,674			
	CBPMs					0	0	0		A. Lyapin	RHUL
	Movers		1000			32000	288	· · · · ·			
	Semsors		104	32		3328	29,952	27,735552			
	Higher resolution digitisers		4200	1		4200	37,8	35,0028			
	IP-BPMs					0	0	0		A. Lyapin	RHUL, JAI?
	Electronics			-		0	0	0			
	FD Girder					-				L. Brunetti	LAPP
						0	0				
TOTAL						143028	1287,252	1191,995352			

ILC-IDT 2020

Beam tests

ATF2	2020-2023				
	ltem	Short description	Human Resources (FTE)	Responsible	Interested collaborators
njector					
Damping Ring					
XT - FFS	Beam tests	Long-Term Stability			
		High-order aberrations (ultra-low, energy bandwidth)	1 PhD	R. Tomas-Garcia	CERN, IJClab
		Wakefield evaluation (upstream beamline)		A. Lyapin	RHUL
		Intensity dependence studies - wakefield mitigation			
		Vibration long-term monitoring system		L. Brunetti	LAPP
		Jitter assesment			
		CBPMs calibration	0.5	A. Lyapin	RHUL
ATF3	2024-2025 Item	Short description	Human Resources (FTE)	Responsible	Interested collaborators
njector					
Damping Ring					
XT-FFS	System Design	Beamline re-design			
		Driven realistic beam dynamics specifications	1 PhD	A. Latina	CERN
		Vibration mitigation new FD		L. Brunetti	LAPP
		Wakefield evaluation		A. Lyapin	RHUL
		Instrumentation assesment: multi-OTR			
		Instrumentation assesment: CBPMs		A. Lyapin	RHUL
		IP Instrumentation			
		IP-BPMs studies		A. Lyapin	RHUL, JAI ?
		IP-BSM laser studies		A. Aryshev	КЕК
	Beam tests ILC	Long-Term stability		1	
		Nominal optics (10bx*x by*) routine operation			
		Intensity depndence studies - wakefield mitigation			
		Vibration long-term monitoring		L. Brunetti	LAPP
		FONT feedback - multibunch			
		High-order aberrations	t fi	1	
		Design optics (bx* x by*)			
		ultra-low by* (long L*, octupoles)	1 postdoc , 1 PhD	R. Tomas	CERN
		Other studies			
		ILC DR Injection/Extraction Kickers			
		Collimation issues			
		New CBPMs (ILC type, waveguides,)	0.5	A. Lyapin	RHUL

Lets surf in the storm....

8 December 2020

ILC-IDT 2020

		Imperfections / issues	Detrimental effect	Potential cures (by design or hardware improvement)	Potential cures (during operation)
	ſ	Dipole / quadrupole misalignment	 Introduces unwanted dispersion (emittance growth) Deflects the beam Introduces coupling 	 Careful pre-alignment Add a dipole corrector, or Put quads on movers Add skew quads to correct coupling 	 BBA techniques If movers are available, align the quads
Static .		Bpm misalignment	 Causes wakefields effects Falses beam-based alignment algorithms 	 Reduce wakefields Careful pre-alignment Put bpms on movers 	 DFS, WFS If movers are available, align the bpms
		Poor bpm resolution	 Fools beam-based alignment algorithms 	Better resolution	 Statistical averaging (but suffers from jitter)
	L	Sextupole misalignment	 Introduces coupling, beta- beating 	Careful sextupole pre-alignmentPut sextupole on movers	 If movers are available, align the sextupoles
Design	ſ	Presence of sextupoles (and octupoles)	 Introduces nonlineartities reduce the momentum acceptance, etc. 	 Revisit the optics to reduce strength Add skew quadrupoles to correct coupling 	 Tuning knobs Beam-based coupling correction techniques
De.	1	Lack of diagnostics	Forces blind operation	Careful design of diagnostic sections	Use the diagnostics
	L	Long bunches	Amplifies wakefield effects	Bunch compressor [likely not possible]	
mic	ſ	Beam jitter	All of the above	Reduce jitter at the source	Feedback systems
Dynamic	1	Ground motion / vibrations	All of the above	Stabilization	Stabilization

Dynamic

Instrumentation R&D

M. Bergamaschi, T. Lefevre, S. Mazzoni

> Optical Transition Radiation (OTR) (2013-2017) Sub micron resolution achieved > Optical Diffraction Radiation (ODR) (2017-2018) Sensitivity to 3 um with non-invasive technique demonstrated (Bergamaschi et al, Phys. Rev. Applied 13, 014041 (2020)) Incoherent Diffraction Cherenkov Radiation (ChDR) (Since Nov. 2018) beam size measurement. The motivation for these studies are: **Suppress Synchrotron Radiation** → cleaner signal DR and SR are emitted at similar angles Looking for a physical process emitted at larger angle Electron Larger aperture compare to DR slits ($> 500 \mu$ m) Beam

Difficult as DR will provide less photons Looking for a physical process providing more photons

ILC-IDT 2020

Instrumentation R&D

M. Bergamaschi, T. Lefevre, S. Mazzoni

PLANS for 2019-2020

- Results from ChDR shifts in 2019 are probably affected by Cherenokv Radiation produced by halo particles hitting the target
- Plan for 2020 shifts (cancelled due to COVID-19): observe at longer wavelength to increase beamtarget distance (reduction of Cherenkov halo background)
- Measure accurately the angular distribution to confirm current ChDR theory from Tomsk group.

Hope to resume activity at ATF2 in 2021 ??

Perspectives: ATF3

R&D beyond colliders:

Mini-workshop to discuss potential projects was organized on 28 Aug. 2020 for Japanese community

Project title	Person in charge	Funding	Term	Required ATF modifications	Location
Development of SuperKEKB Fast Kicker .	M. Tawada (KEK)	KEKB	Fall 2021 ~	minor	EXT-mid
Development of SuperKEKB OTR Monitor.	T. Mori (KEK)	КЕКВ	Fall 2021 ~	minor	EXT-end
lew betatron feedback scheme, AC multipole nagnets, and ultra-fast quadrupole kicker tests.	T. Nakamura (KEK/JPARC)	?	2021 ~	minor	DR
ccelerator Control System test.	Y. Kaji (KEK)	KEKB	2021 ~	minor	Timing system
etector radiation resistance tests.	Y. Sugimoto (KEK)	КЕКВ	2021 ~	80MeV linac optics	Linac-end
Gamma-ray source for user application .	ATF group (KEK)	-	-	minor	DR north
Performance evaluation of ultra-short period undulator.	S. Yamamoto (KEK)	KEK-PF	2021 ~	minor	DR north
larized gamma-ray beam generation suming ILC.	N. Muramatsu (Tohoku Uni.)	?	2023 ~	minor	EXT/FF
ectron beam focusing by active plasma lens.	M. Kando (Osaka U.)	?	2021 ~	New laser, LTL, vacuum bump chamber	EXT-end
est of the Lorentz invariance.	T. Shima (Osaka Uni.)	JSPS ↑	-	BSM modification	FF
Demonstration of seed FEL (CHG).	Y. Honda (KEK)	JSPS ↑↑	-	EXT beamline modification	EXT-mid
trong-field QED experiments.	Under discussion	JSPS $\uparrow\uparrow\uparrow$	-	ATF2 FF region upgrade and extension	FF

A. Aryshev