New ideas and their applications: double beta decay

Giovanni Benato

P210 BSM-v February 12, 2021

Expected 0vββ decay signature

ββ decay signature

- Continuum for 2vββ decay
- Peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ decay \Rightarrow Energy peak is the only necessary and sufficient signature to claim a discovery
- Additional signatures from signal topology, pulse shape discrimination, multiple channel readout, daughter tagging, ...

0vββ decay rate

$$(T_{1/2}^{0v})^{-1} = G_{0v} \cdot |M_{0v}|^2 \cdot |f|^2 / m_e^2$$

- $T_{1/2}^{0v} = 0v\beta\beta$ decay half-life
- G_{0y}^{n} = phase space (known)
- M_{0v}° = nuclear matrix element (NME)
- f = new physics term

Isotope choice for $0v\beta\beta$ decay experiments

- High isotopic abundance
- Enrichment possible at reasonable cost?
- $Q_{\beta\beta}$ above end point of β or γ radiation?
- Detector technology available?
- Large scale production possible?

$0v\beta\beta$ decay experimental fauna

0vββ decay experimental fauna

Germanium experiments

- Low Q-value: 2039 keV
- Highest energy resolution: ~0.1%
- Extremely low bkg: ~5·10⁻⁴ counts/keV/kg/yr
 → Operating next to linear sensitivity regime
- Best limit:
 - $T_{1/2}^{0v}(^{76}Ge) > 1.8 \cdot 10^{26} \text{ yr } @ 90\% \text{ C.L.}$
- MAJORANA + GERDA joining for next generation experiment: LEGEND

Xenon TPCs

EXO-200 / nEXO

- Liquid TPC
 - → Self shielding, easy to scale up
- Gas TPC
 - → Energy resolution ~1%
 - → Particle tracking
- Double readout: ionization and scintillation
 - Best available limit (EXO-200):
 - $T_{1/2}^{0v}(^{136}Xe) > 5.0 \cdot 10^{25} \text{ yr } @ 90\% \text{ C.L.}$
- Daughter tagging possible!

NEXT

Liquid scintillator experiments

KamLAND-Zen Current

- Readout of scintillation only
 - → Energy resolution of few %
 - → Particle identification possible
- Very large volume
 - → Isotope in central part
 - → Highly effective self shielding
- Isotope dissolved in liquid scintillator
 - → Easily scalable
- Readout of Cherenkov light possible in future experiments

Tracking experiments: SuperNEMO

- Decay vertex
- Charged particle trajectory
- Particle energy and TOF

- Measure both energy and momentum
 - → Background suppression
 - \rightarrow Single electrons resolved
 - \rightarrow Possible to study $0\nu\beta\beta$ decay mechanism
- Source ≠ detector
 - → Limited isotope mass
 - → Any isotope is usable
- Perfect technology for precision measurement of 0vββ and 2vββ decay

Cryogenic calorimeters a.k.a. bolometers

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Detector agnostic to origin of energy deposition
- Detector response of O(1) sec if readout with Neutron Transmutation Doped (NTD) Ge sensors

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep}/C$
- Decay constant: τ = G/C

History of bolometric $0v\beta\beta$ decay searches

CUORE infrastructure

The coldest cubic meter in the known Universe

- Multistage cryogen-free cryostat: nested vessels at decreasing temperature
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and Dilution Unit (DU)
- ~15 tons @ < 4 K
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding
- H₃BO₃ panels
- Polyethylene

CUORE: the Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals with natural Te composition
 → 742 kg of total mass, 206 kg of ¹³⁰Te mass
- Located in Hall A of the Gran Sasso National Lab
- Current limit: $T^{0v}_{1/2}(^{130}Te) > 3.2 \cdot 10^{25} \text{ yr } @ 90\% \text{ C.I.}$
- $Q_{BB}^{(130}\text{Te}) = 2527.5 \text{ keV}$
 - → Above most γ background, below the ²⁰⁸TI 2.6 MeV line
- TeO₂ crystals do not scintillate
 - → no particle discrimination

Lessons learned from CUORE

ROI - External sources

- Most measured background is due to α particles (U/Th close to TeO₂ crystals)
 → α/β discrimination is required
- A $Q_{\beta\beta}$ > 2.6 MeV would automatically reduce the remaining non- α background by >1 order of magnitude
- Muons are the dominant contribution after α's
 → active muon veto

Preparing the future: CUPID-0

Commissioning Cool-down

- 26 ZnSe crystals (24 enriched at 95% in 82Se) @ LNGS
- Light detectors: Ge wafer + NTDs → α rejection via PID
- Crystals + LDs encapsulated in copper + reflector foil
- Total Phase-I exposure: 9.95 kg·yr
- Background at Q_{BB}: 3.5·10⁻³ counts/keV/kg/yr

2vββ results

- $T^{2v}_{1/2}(^{82}Se) = [8.6 \pm 0.03(stat)^{+0.17}_{-0.10}(syst)] \cdot 10^{19} yr$
- Tested SSD vs HSD for 82Se → HSD excluded

Ovββ results

 $T^{0v}_{1/2}(^{82}Se) > 3.5 \cdot 10^{24} \text{ yr } @ 90\% \text{ C.I.}$

Preparing the future: CUPID-Mo

- 20 x 210g Li₂MoO₄ crystals 97% enr. in ¹⁰⁰Mo @ LSM
- Ge wafer with SiO anti-reflective coating + NTD as light detector
- Cu frames + reflector foil
- 2.16 kg·yr analyzed exposure
- Dominant 2vββ spectrum
- Most γ lines from external background sources
- Very few counts >3 MeV after PID cut

Preparing the future: Cupid-Mo

Results

CUPID-Mo, arXiv:2011.13243 (submitted to PRL)

- T_{1/2}^{0v}(¹⁰⁰Mo) > 1.5·10²⁴ yr @ 90% C.I.
 Best result so far in ¹⁰⁰Mo!
- m_{ββ} < 0.3-0.5 eV (depending on NME) → 4th most stringent limit with just 1.19 kg·yr of ¹⁰⁰Mo!
- Bl O(10⁻³) counts/keV/kg/yr ———— Precise evaluation with background model ongoing

CUPID-Mo is a real experiment, not just a demonstrator!

CUPID: Cuore Upgrade with Particle IDentification

- ~250 kg of ^{enr}Li₂MoO₄ scintillating crystals
- Goal FWHM: 5 keV at Q_{ββ}
- α rejection via PID
- Goal background: 10⁻⁴ counts/keV/kg/yr
- Discovery sensitivity: $T_{1/2}^{0v} = 10^{27} \text{ yr}$

PID via scintillation light signal

CROSS: pulse shape on heat channel

How do we proceed beyond CUPID?

- Increase mass
 - → Easy, just need to find money
- Reduce background
 - → Active shield, active crystal mounting
 - → Faster and more sensitive LDs,
 e.g. TES or Neganov-Luke assisted LDs
- Multi-isotope approach allows confirmation of discovery with same setup

Ongoing ERC: **BINGO**

THANK YOU!

- Q_{BB} in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
 - ⇒ Operate underground
- Neutrons (muon induced, fission, ...)
 - ⇒ Neutron absorbers (water, PE, borated PE, ...)
- Actinides (²³⁸U and ²³²Th) decay chains + Rn
 - o a up to 8 MeV
 - o β up to 3.3 MeV
 - γ up to 2.6 MeV
 - ⇒ Material selection
 - ⇒ Cleaning protocol
 - ⇒ Avoid recontamination
 - ⇒ Shielding and self-shielding
 - ⇒ Event topology
 - ⇒ Particle discrimination via pulse shape
- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - ⇒ Energy resolution
 - Pile-up of 2vββ events
 - ⇒ Time resolution

- Q_{BB} in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
 - ⇒ Operate underground
- Neutrons (muon induced, fission, ...)
 - \Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides (²³⁸U and ²³²Th) decay chains + Rn
 - o a up to 8 MeV
 - β up to 3.3 MeV
 - γ up to 2.6 MeV
 - ⇒ Material selection
 - ⇒ Cleaning protocol
 - ⇒ Avoid recontamination
 - ⇒ Shielding and self-shielding
 - ⇒ Event topology
 - ⇒ Particle discrimination via pulse shape
- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - ⇒ Energy resolution
 - Pile-up of 2vββ events
 - ⇒ Time resolution

- Q_{BB} in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
 - ⇒ Operate underground
- Neutrons (muon induced, fission, ...) -
 - \Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides (²³⁸U and ²³²Th) decay chains + Rn
 - o a up to 8 MeV
 - β up to 3.3 MeV
 - γ up to 2.6 MeV
 - ⇒ Material selection
 - ⇒ Cleaning protocol
 - ⇒ Avoid recontamination
 - ⇒ Shielding and self-shielding
 - ⇒ Event topology
 - ⇒ Particle discrimination via pulse shape
- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - ⇒ Energy resolution
 - Pile-up of 2vββ events
 - ⇒ Time resolution

- Q_{BB} in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
 - ⇒ Operate underground
- Neutrons (muon induced, fission, ...)
 - ⇒ Neutron absorbers (water, PE, borated PE, ...)
- Actinides (²³⁸U and ²³²Th) decay chains + Rn
 - o a up to 8 MeV
 - o β up to 3.3 MeV
 - γ up to 2.6 MeV
 - ⇒ Material selection
 - ⇒ Cleaning protocol
 - ⇒ Avoid recontamination
 - ⇒ Shielding and self-shielding
 - ⇒ Event topology
 - ⇒ Particle discrimination via pulse shape
- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - ⇒ Energy resolution
 - \circ Pile-up of 2vββ events
 - ⇒ Time resolution

- Q_{BB} in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
 - ⇒ Operate underground
- Neutrons (muon induced, fission, ...)
 - ⇒ Neutron absorbers (water, PE, borated PE, ...)
- Actinides (²³⁸U and ²³²Th) decay chains + Rn
 - o a up to 8 MeV
 - β up to 3.3 MeV
 - γ up to 2.6 MeV
 - ⇒ Material selection
 - ⇒ Cleaning protocol
 - ⇒ Avoid recontamination
 - ⇒ Shielding and self-shielding
 - ⇒ Event topology
 - ⇒ Particle discrimination via pulse shape
- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - ⇒ Energy resolution
 - Pile-up of 2vββ events-
 - ⇒ Time resolution

Backup: Scintillating bolometers

- Main background: surface α events
- Couple main crystal with secondary bolometer reading the scintillation (or Cherenkov) light
- Exploit different light yield (LY) of α vs β/γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to thermometer (NTD, TES, KID, MMC)

Backup: Scintillating crystals

Scintillation light features

- Typical light yield (LY): O(10) photons/keV
 → Expected energy resolution: few %
- Amount of emitted light is particle dependent
- For some crystals, time profile of scintillation light is particle dependent

Scintillating crystals for 0vββ decay

- Heat to measure energy
- Scintillation light for particle identification (PID)

D. Helis et al., LTD 2018, 467

A. S. Barabash et al, Phys.Rev. D98 (2018) 092007