New ideas and their applications: double beta decay

Giovanni Benato

P210 BSM-v February 12, 2021

Expected $0 v \beta \beta$ decay signature

$\beta \beta$ decay signature

- Continuum for $2 v \beta \beta$ decay
- Peak at $Q_{\beta \beta}$ for $0 v \beta \beta$ decay
\Rightarrow Energy peak is the only necessary and sufficient signature to claim a discovery
- Additional signatures from signal topology, pulse shape discrimination, multiple channel readout, daughter tagging, ...

$0 v \beta \beta$ decay rate

$$
\left(T_{1 / 2}^{0 v}\right)^{-1}=G_{o v} \cdot\left|M_{0 v}\right|^{2} \cdot|f|^{2} / m_{e}^{2}
$$

- $T_{1 / 2}{ }^{0 v}=0 v \beta \beta$ decay half-life
- $\mathrm{G}_{0 \mathrm{v}}=$ phase space (known)
- $\mathrm{M}_{\mathrm{Ov}}=$ nuclear matrix element (NME)
- $f=$ new physics term

Isotope choice for $0 \mathrm{v} \beta \beta$ decay experiments

- High isotopic abundance
- Enrichment possible at reasonable cost?
- $Q_{\beta \beta}$ above end point of β or γ radiation?
- Detector technology available?
- Large scale production possible?

$0 v \beta \beta$ decay experimental fauna

$0 v \beta \beta$ decay experimental fauna

Germanium experiments

- Low Q-value: 2039 keV
- Highest energy resolution: $\sim 0.1 \%$
- Extremely low bkg: $\sim 5 \cdot 10^{-4}$ counts $/ \mathrm{keV} / \mathrm{kg} / \mathrm{yr}$ \rightarrow Operating next to linear sensitivity regime
- Best limit:
$\left.\mathrm{T}_{1 / 2}{ }^{0 \mathrm{v}}{ }^{76} \mathrm{Ge}\right)>1.8 \cdot 10^{26} \mathrm{yr} @ 90 \% \mathrm{C} . \mathrm{L}$.
- MAJORANA + GERDA joining for next generation experiment: LEGEND

Xenon TPCs

EXO-200 / nEXO

- Liquid TPC
\rightarrow Self shielding, easy to scale up
- Gas TPC
\rightarrow Energy resolution ~1\%
\rightarrow Particle tracking
- Double readout: ionization and scintillation
- Best available limit (EXO-200): $\mathrm{T}_{1 / 2}{ }^{0 v}\left({ }^{136} \mathrm{Xe}\right)>5.0 \cdot 10^{25} \mathrm{yr}$ @ 90\% C.L.
- Daughter tagging possible!

NEXT

Liquid scintillator experiments

KamLAND-Zen

Current

KamLAND-Zen 800
Mini-balloon Radius $=1.90 \mathrm{~m}$
Xenon mass $=745 \mathrm{~kg}$
Started January 2019

- Readout of scintillation only
\rightarrow Energy resolution of few \%
\rightarrow Particle identification possible
- Very large volume
\rightarrow Isotope in central part
\rightarrow Highly effective self shielding
- Isotope dissolved in liquid scintillator
\rightarrow Easily scalable
- Readout of Cherenkov light possible in future experiments

Tracking experiments: SuperNEMO

Cryogenic calorimeters a.k.a. bolometers

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution ($\sim 0.2 \%$ FWHM)
- Detector agnostic to origin of energy deposition
- Detector response of $O(1)$ sec if readout with Neutron Transmutation Doped (NTD) Ge sensors

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T=E_{\text {dep }} / C$
- Decay constant: $\tau=G / C$

History of bolometric $0 \mathrm{v} \beta \beta$ decay searches

CUORE infrastructure

The coldest cubic meter in the known Universe

- Multistage cryogen-free cryostat: nested vessels at decreasing temperature
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and Dilution Unit (DU)
- ~15 tons @ < 4 K
- $\quad 3$ tons $@<50 \mathrm{mK}$
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding
- $\mathrm{H}_{3} \mathrm{BO}_{3}$ panels
- Polyethylene

CUORE: the Cryogenic Underground Observatory for Rare Events

- $988 \mathrm{TeO}_{2}$ crystals with natural Te composition $\rightarrow \mathbf{7 4 2} \mathbf{~ k g}$ of total mass, 206 kg of ${ }^{130} \mathrm{Te}$ mass
- Located in Hall A of the Gran Sasso National Lab
- Current limit: $\mathrm{T}^{0 \mathrm{v}}{ }_{1 / 2}\left({ }^{130} \mathrm{Te}\right)>\mathbf{3 . 2 \cdot 1 0 ^ { 2 5 }} \mathrm{yr} @ 90 \% \mathrm{C} . \mathrm{I}$.
- $Q_{\beta \beta}\left({ }^{130} \mathrm{Te}\right)=2527.5 \mathrm{keV}$
\rightarrow Above most γ background, below the ${ }^{208} \mathrm{TI} 2.6 \mathrm{MeV}$ line
- TeO_{2} crystals do not scintillate
\rightarrow no particle discrimination

Lessons learned from CUORE

- Most measured background is due to a particles (U/Th close to TeO_{2} crystals) $\rightarrow \alpha / \beta$ discrimination is required
- $\quad \mathrm{A}_{\beta \beta}>2.6 \mathrm{MeV}$ would automatically reduce the remaining non-a background by >1 order of magnitude
- Muons are the dominant contribution after a's \rightarrow active muon veto

Preparing the future: CUPID-0

Preparing the future: CUPID-Mo

- $20 \times 210 \mathrm{~g} \mathrm{Li}_{2} \mathrm{MoO}_{4}$ crystals 97% enr. in ${ }^{100} \mathrm{Mo} @$ LSM
- Ge wafer with SiO anti-reflective coating + NTD as light detector
- Cu frames + reflector foil
- $2.16 \mathrm{~kg} \cdot \mathrm{yr}$ analyzed exposure
- Dominant $2 v \beta \beta$ spectrum
- Most γ lines from external background sources

- Very few counts $>3 \mathrm{MeV}$ after PID cut

Preparing the future: Cupid-Mo

Results

- $\mathbf{T}_{1 / 2}{ }^{\text {Ov }}\left({ }^{100} \mathrm{Mo}\right)>1.5 \cdot 10^{24} \mathrm{yr} @ 90 \%$ C.l \longrightarrow Best result so far in ${ }^{100} \mathrm{Mo}$!
$\bullet \mathrm{m}_{\beta \beta}<0.3-0.5 \mathrm{eV}$ (depending on NME) $\longrightarrow 4^{\text {th }}$ most stringent limit with just $1.19 \mathrm{~kg} \cdot \mathrm{yr}$ of ${ }^{100} \mathrm{Mo}$!
- $\mathrm{BIO}\left(10^{-3}\right)$ counts $/ \mathrm{keV} / \mathrm{kg} / \mathrm{yr} \longrightarrow$ Precise evaluation with background model ongoing

CUPID-Mo is a real experiment, not just a demonstrator!

CUPID: Cuore Upgrade with Particle IDentification

- $\quad 250 \mathrm{~kg}$ of ${ }^{\text {enr }} \mathrm{Li}_{2} \mathrm{MoO}_{4}$ scintillating crystals
- Goal FWHM: 5 keV at $\mathrm{Q}_{\beta \beta}$
- a rejection via PID
- Goal background: 10^{-4} counts $/ \mathrm{keV} / \mathrm{kg} / \mathrm{yr}$
- Discovery sensitivity: $T^{0 \mathrm{v}}{ }_{1 / 2}=10^{27} \mathrm{yr}$

PID via scintillation light signal

CROSS: pulse shape on heat channel

How do we proceed beyond CUPID?

- Increase mass
\rightarrow Easy, just need to find money

```
-
```

- Reduce background
\rightarrow Active shield, active crystal mounting
\rightarrow Faster and more sensitive LDs,
e.g. TES or Neganov-Luke assisted LDs
- Multi-isotope approach allows confirmation of discovery with same setup

Ongoing ERC: BINGO

THANK YOU!

Backup: Backgrounds

- $Q_{\beta \beta}$ in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
\Rightarrow Operate underground
- Neutrons (muon induced, fission, ...)
\Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides (${ }^{238} \mathrm{U}$ and $\left.{ }^{232} \mathrm{Th}\right)$ decay chains + Rn
- a up to 8 MeV
- β up to 3.3 MeV
- γ up to 2.6 MeV
\Rightarrow Material selection
\Rightarrow Cleaning protocol
\Rightarrow Avoid recontamination
\Rightarrow Shielding and self-shielding
\Rightarrow Event topology
\Rightarrow Particle discrimination via pulse shape
- Irreducible $2 v \beta \beta$ background
- Tail of $2 v \beta \beta$ spectrum
\Rightarrow Energy resolution
- Pile-up of $2 v \beta \beta$ events
\Rightarrow Time resolution

Backup: Backgrounds

- $Q_{\beta \beta}$ in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
\Rightarrow Operate underground
- Neutrons (muon induced, fission, ...)
\Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides $\left({ }^{238} \mathrm{U}\right.$ and $\left.{ }^{232} \mathrm{Th}\right)$ decay chains +Rn
- a up to 8 MeV
- β up to 3.3 MeV
- γ up to 2.6 MeV
\Rightarrow Material selection
\Rightarrow Cleaning protocol
\Rightarrow Avoid recontamination
\Rightarrow Shielding and self-shielding
\Rightarrow Event topology
\Rightarrow Particle discrimination via pulse shape
- Irreducible $2 v \beta \beta$ background
- Tail of $2 v \beta \beta$ spectrum \Rightarrow Energy resolution
- Pile-up of $2 v \beta \beta$ events \Rightarrow Time resolution

Equivalent depth under flat surface [km w.e.]

Backup: Backgrounds

- $Q_{\beta \beta}$ in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
\Rightarrow Operate underground
- Neutrons (muon induced, fission, ...) \Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides (${ }^{238} \mathrm{U}$ and $\left.{ }^{232} \mathrm{Th}\right)$ decay chains + Rn
- a up to 8 MeV
- β up to 3.3 MeV
- γ up to 2.6 MeV
\Rightarrow Material selection
\Rightarrow Cleaning protocol
\Rightarrow Avoid recontamination
\Rightarrow Shielding and self-shielding

\Rightarrow Event topology
G. Bruno and B. Fulgione, EPJ C79 (2019) 747
\Rightarrow Particle discrimination via pulse shape
- Irreducible $2 v \beta \beta$ background
- Tail of $2 v \beta \beta$ spectrum
\Rightarrow Energy resolution
- Pile-up of $2 v \beta \beta$ events
\Rightarrow Time resolution

Backup: Backgrounds

- $Q_{\beta \beta}$ in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
\Rightarrow Operate underground
- Neutrons (muon induced, fission, ...)
\Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides (${ }^{238} \mathrm{U}$ and $\left.{ }^{232} \mathrm{Th}\right)$ decay chains + Rn
- a up to 8 MeV
- β up to 3.3 MeV
- Y up to 2.6 MeV
\Rightarrow Material selection
\Rightarrow Cleaning protocol
\Rightarrow Avoid recontamination
\Rightarrow Shielding and self-shielding
\Rightarrow Event topology
\Rightarrow Particle discrimination via pulse shape
- Irreducible $2 v \beta \beta$ background
- Tail of $2 v \beta \beta$ spectrum
\Rightarrow Energy resolution
- Pile-up of $2 v \beta \beta$ events
\Rightarrow Time resolution

Backup: Backgrounds

- $Q_{B B}$ in the 2-3.5 MeV range for most used isotopes
- Cosmic muons
\Rightarrow Operate underground
- Neutrons (muon induced, fission, ...)
\Rightarrow Neutron absorbers (water, PE, borated PE, ...)
- Actinides $\left({ }^{238} \mathrm{U}\right.$ and $\left.{ }^{232} \mathrm{Th}\right)$ decay chains +Rn
- a up to 8 MeV
- β up to 3.3 MeV
- γ up to 2.6 MeV
\Rightarrow Material selection
\Rightarrow Cleaning protocol
\Rightarrow Avoid recontamination
\Rightarrow Shielding and self-shielding
\Rightarrow Event topology
\Rightarrow Particle discrimination via pulse shape
- Irreducible $2 v \beta \beta$ background
- Tail of $2 v \beta \beta$ spectrum \Rightarrow Energy resolution
- Pile-up of $2 v \beta \beta$ events \Rightarrow Time resolution

D. M. Cherniak et al., EPJ C72 (2012) 1989

Backup: Scintillating bolometers

- Main background: surface a events
- Couple main crystal with secondary bolometer reading the scintillation (or Cherenkov) light
- Exploit different light yield (LY) of a vs β / γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to

 thermometer (NTD, TES, KID, MMC)

Backup: Scintillating crystals

Scintillation light features

- Typical light yield (LY): O(10) photons/keV \rightarrow Expected energy resolution: few \%
- Amount of emitted light is particle dependent
- For some crystals, time profile of scintillation light is particle dependent

Scintillating crystals for $0 v \beta \beta$ decay

- Heat to measure energy
- Scintillation light for particle identification (PID)

