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Nuclear physics for neutrino physics: neutrino oscillation experiments

The extraction of the oscillation parameters in the neutrino mixing matrix U from the measurement of oscillation 
probabilities crucially depends on the accurate knowledge of the neutrino energy  

          

  must be reconstructed from the kinematics of the detected particles                                                          
 (leptons, nucleons, pions…)

 Detectors are made of complex nuclei (C, O, Ar,…): 
 reliable nuclear models are needed for data analyses.
 
Large systematic uncertainty from modeling 
of neutrino-nucleus interactions.

The success of future experiments largely 
relies on the ability to reduce this 
uncertainty.

Pα→β = ⟨να |νβ(t)⟩
2

= ∑i U*αiUβieim2
i L/2Eν

2

Eν

DUNET2K

Nuclear models are necessary for the interpretation of long baseline neutrino experiments in search of BSM 
physics: leptonic CP violation, improved accuracy on oscillation angles, neutrino mass ordering

C. Results

Both the M1 and M2 analyses find the point estimates
sin2 θ23 ¼ 0.514 and Δm2

32 ¼ 2.51 × 10−3 eV2=c4 when
assuming the normal mass hierarchy and sin2θ23 ¼ 0.511
and Δm2

13 ¼ 2.48 × 10−3 eV2=c4 when assuming the
inverted mass hierarchy. Table XXI summarizes these
results from the M1 and M2 analyses. Likewise, the

confidence intervals produced by M1 and M2 are similar.
Since the M1 and M2 analyses are consistent with each
other, only results from M1 are given below. Figure 27
shows the best-fit values of the oscillation parameters, the
two-dimensional confidence intervals calculated using the
Feldman and Cousins method, assuming normal and
inverted hierarchy, and the sensitivity at the current
exposure. The size of the confidence interval found by
the fit to the data is smaller than the sensitivity. This arises
because the best-fit point is at the physical boundary
corresponding to maximum disappearance probability.
The amount by which the region is smaller is not unusual
in an ensemble of toy MC experiments produced under the
assumption of maximal disappearance. The best-fit spec-
trum from the normal hierarchy fit compared to the
observed spectrum is shown in Fig. 28, showing as well
the ratio of the number of observed events to the predicted
number of events with sin2θ23 ¼ 0. The observed oscil-
lation dip is significant and well fit by simulation. The
calculated one-dimensional Feldman and Cousins confi-
dence intervals are given in Table XXII. Figure 29 shows
the -2Δ lnL distributions for sin2 θ23 and jΔm2j from the
data, along with the 90% C.L. critical values.

D. Multinucleon effects study

Recently, experimental [67,113–115] and theoretical
[24,25,116–129] results have suggested that the charged-
current neutrino-nucleus scattering cross section at T2K
energies could contain a significant multinucleon compo-
nent. Such processes are known to be important in
describing electron-nucleus scattering (for a review, see
[130]), but have not yet been included in the model of
neutrino-nucleus interactions in our muon neutrino dis-
appearance analyses. If such multinucleon effects are
important, their omission could introduce a bias in the
oscillation analyses. Since low energy nucleons are not
detected in SK, such events can be selected in the QE
sample and assigned incorrect neutrino energies.
A Monte Carlo study was performed in order to explore

the sensitivity of the analysis to multinucleon effects. The
nominal interaction model includes pion-less delta decay
(PDD), which can be considered to be a multinucleon
effect. As an alternative, we turn off PDD and use a model
by Nieves [24] to simulate multinucleon interactions for
neutrino energies below 1.5 GeV. Pairs of toy Monte Carlo
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FIG. 27 (color online). The 68% (dashed) and 90% (solid) C.L.
intervals for the M1 νμ -disappearance analysis assuming normal
and inverted mass hierarchies. The 90% C.L. sensitivity contour
for the normal hierarchy is overlaid for comparison.
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FIG. 28 (color online). Top: Reconstructed neutrino energy
spectrum for data, best-fit prediction, and unoscillated prediction.
Bottom: Ratio of oscillated to unoscillated events as a function of
neutrino energy for the data and the best-fit spectrum.

TABLE XXII. The 68% and 90% confidence level intervals for
the νμ-disappearance analysis.

MH 68% C.L. 90% C.L.

sin2 θ23 NH [0.458, 0.568] [0.428, 0.598]
sin2 θ23 IH [0.456, 0.566] [0.427, 0.596]
Δm2

32ð10−3 eV2=c4Þ NH [2.41, 2.61] [2.34, 2.68]
Δm2

13ð10−3 eV2=c4Þ IH [2.38, 2.58] [2.31, 2.64]

K. ABE et al. PHYSICAL REVIEW D 91, 072010 (2015)

072010-34

T2K,Phys.Rev.D 91, 072010 (2015)

T2K, Nature 580 (2020)
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Nuclear response to a electroweak probe

A

B
X

l

l′ l(A, BX)l′ Inclusive measurement
(only the final lepton is observed)

l(A, B)Xl′ Exclusive or semi-inclusive measurement
(the final lepton is detected in coincidence with one or
more other reaction products, e.g. a proton)

(ω, q)

Strict analogy between neutrino ( exchange) and electron (mainly  exchange) scattering: 
the vector currents are related by an isospin rotation and the effects of the nuclear medium are expected to be the same.

W±, Z0 γ
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Nuclear response to a electroweak probe

A

B
X

l

l′ l(A, BX)l′ Inclusive measurement
(only the final lepton is observed)

l(A, B)Xl′ Exclusive or semi-inclusive measurement
(the final lepton is detected in coincidence with one or
more other reaction products, e.g. a proton)

(ω, q)

        energy transfer
        momentum transfer

  four-momentum transfer

variables commonly used in electron scattering 
studies, where they can be precisely measured.
In neutrino experiments the incoming energy is 
not exactly known: cross sections must be
averaged over the neutrino flux 
->  and  are not accessible

ω = ε′ − ε
q = k − k′ 

Q2 = q2 − ω2

Φ(Eν)
ω q

Strict analogy between neutrino ( exchange) and electron (mainly  exchange) scattering: 
the vector currents are related by an isospin rotation and the effects of the nuclear medium are expected to be the same.

W±, Z0 γ

Different processes, from low energy collective excitations up to deep inelastic scattering at high energies, can 
contribute to the same final lepton kinematics and cannot be disentangled: multiscale problem. 
The goal of Monte Carlo event generators (GENIE, NEUT, NuWro, GIBUU) is to model all these reactions.

2p2h

7.1. CCQE νµ AND νµ REACTIONS AT MINIBOONE AND NOMAD KINEMATICS 129

7.1.1 MiniBooNE flux-integrated cross sections

In this section, we apply the SuSAv2-MEC model to the study of neutrino and antineutrino CCQE
MiniBooNE double-differential cross sections. Unlike the total flux-unfolded cross section that
is not measured directly and largely depends on model assumptions, the flux-integrated double
differential cross section implies minimal model dependence although requires the convolution
of the cross section over the energy spectrum of the neutrino flux. This is obtained through the
following procedure:

d2σ

dTµd cos θµ
=

1
Φtot

∫ [
d2σ

dTµd cos θµ

]
Eν

Φ(Eν)dEν , (7.4)

where
[

d2σ

dTµd cos θµ

]
Eν

is the double differential cross section for a given neutrino energy Eν and

Φtot is the neutrino flux integrated over all neutrino energies. A similar expression also applies to
the antineutrino case.

In Figs. 7.3 – 7.5 we show the double differential cross section averaged over the neutrino (an-
tineutrino) energy flux against the kinetic energy of the final muon. We represent a large variety
of kinematical situations where each panel refers to results averaged over a particular muon an-
gular bin. Notice that the mean energy of the MiniBooNE νµ (νµ) flux is 788 (665) MeV which
requires a relativistic treatment of the process. In Figs. 7.3 – 7.5 we show results for the pure QE
response (red dot-dashed line) and the total contribution of the 2p-2h MEC (orange dashed line),
i.e., including vector and axial terms in the three responses, L,T and T ′. Finally, the total response
(QE+2p-2h MEC) is represented by the solid blue line.

As observed, the model tends to overpredict the data for the most forward angles, i.e., 0.9 ≤
cos θµ ≤ 1. This corresponds to very small energy and momentum transfers, a kinematic situa-
tion where “quasi-free" scattering is highly questionable. However, note how well the pure QE
response fits the data, in particular, for neutrinos. As the scattering angle increases, the theoretical
prediction including both the QE and the 2p-2h MEC effects agrees well with the data. This is the
case for neutrinos and antineutrinos (Fig. 7.3 and Fig. 7.5) at angles below 90◦. On the contrary, the
discrepancy between theory and data tends to increase as θµ gets larger (Fig. 7.4 and bottom panels
in Fig. 7.5). Notice, however, that in these situations only a small number of data points with large
uncertainties exist and the cross section is much smaller. A possible explanation for these results
at very backward kinematics, i.e higher q values, particularly for neutrino scattering, might be due
to the lack of MEC-correlations interference in our description. Nevertheless, similar results can
also be found in [163] where MEC-correlation interferences are considered but including some
approximations in the relativistic treatment of the 2p-2h MEC contributions. In this sense, effects
of relevance at backward kinematics beyond IA and 2p-2h MEC contributions in the analysis of
the MiniBooNE experimental data are not excluded.

Results in Figs. 7.3 – 7.5 clearly show the relevant role played by effects beyond the impulse
approximation. In particular, 2p-2h MEC contributions are essential to describe data. Their relative
percentage at the maximum, compared with the pure QE response, being of order 25 − 35%.
The relative strength associated with 2p-2h MEC gets larger for increasing values of the angle,
particularly, in the case of antineutrinos. Note that, in spite of the quite different neutrino and
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Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Neutrino-nucleus reactions for ν oscillation experiments

Challenges for theoretical nuclear models

! Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
! Expressing the nuclear model to be succesfully incorporated in neutrino event generators.

No clear ID of all
FS particles

⇒ Relevance of 2p2h,
FSI effects, rescatter-
ing processes and π-
production background.

Event topology:
CCQE

CCQE-like = CCQE+CC2p2h
CC0π = CCQE-like with π

absorption background
CC1π
CCDIS

...

82 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by

FeN
2 =

1
2

(

F
ep
2 + Fen

2

)

=
5x

18

(

u + u + d + d
)

+
x

9
(s + s) , (5.52)

where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈

5x

18

(

u + u + d + d
)

≈
5

18
FνN

2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.

QE and 2p2h
dominant at T2K kinematicsSEMI-INCLUSIVE CHARGED-CURRENT NEUTRINO- … PHYSICAL REVIEW C 102, 064626 (2020)

the momenta k′ and pN and the solid angles !k′ = (θl ,φl ) and
!L

N = (θL
N ,φL

N ) in the factorization approximation is given by
[37]

dσ

dk′d!k′d pN d!L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

∫ ∞

0
dE

×
∫

d3 pmυ0F2
χS[pm, Em(E, pm)]

× δ
(
MA + k − ε′ − EN −

√
p2

m + M2
A−1 − E

)

× δ(k − k′ − pN + pm), (21)

where GF is the Fermi constant, θc is the Cabibbo angle, F2
χ

(χ = +1 for neutrinos and χ = −1 for antineutrinos) is a
reduced single nucleon cross section and υ0 is a kinematic
factor. Those are defined in the Appendix. The spectral func-
tion S[pm, Em(E, pm)], which describes the possibility to find
a nucleon in a nucleus with given momentum and excitation
energy of the residual nuclear system, embodies the nuclear
model dependence. It will be discussed in Sec. III in differ-
ent models. In the case of relativistic nuclear models, as the
relativistic Fermi gas, an extra factor mN/

√
p2

m + m2
N must be

inserted inside the integral, according to the Feynman rules
[43].

The integrals over E and pm can be performed using the
δ functions, and the following analytical expression for the
cross section results:

dσ

dk′d!k′d pN d!L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

× υ0F2
χS[pm, Em(E, pm)] θ (E ), (22)

where the missing momentum and excitation energy in the
previous expression are fixed by the following conditions:

pm = |k′ + pN − k|, (23)

E = MA + k − ε′ − EN −
√

p2
m + M2

A−1

& k − ε′ − EN + mN − Es, (24)

and υ0F2
χ is meant to be evaluated at the values of pm and E

given by Eqs. (23) and (24).
Equations (21) and (22) depend on the variables of the final

lepton and the outgoing nucleon and assume that the neu-
trino energy k, and therefore the transferred four-momentum
(ω, q), are fixed. However, in comparing the results obtained
using this equation with experimental data it is necessary to
take into account that in long-baseline oscillation experiments
the neutrino beam does not have a well-defined energy: a
particle accelerator boosts protons which collide with a target,
for instance graphite or beryllium, producing charged pions
and kaons. Then, these positive (negative) hadrons decay to
produce a flux usually highly dominated by νµ (ν̄µ): de-
pending of the specific experiment, there is a more or less
extended range of initial neutrino energies that participate in
the reaction. As a consequence one needs to average over all
the possible energies to compare with the experimental data.

FIG. 5. Muonic neutrino flux with total area normalized to 1 for
the DUNE and T2K experiments.

As already mentioned, in this work we will concentrate our
attention on two of these experiments, namely T2K [44] and
DUNE [2]. The corresponding fluxes for the muonic neutrinos
are presented in Fig. 5 [45,46].

After including an integration over the initial neutrino
energy in Eq. (22) we get the following flux-averaged semi-
inclusive cross section:
〈

dσ

dk′d!k′d pN d!L
N

〉
= (GF cos θck′ pN )2mN

8ε′EN (2π )6

∫ ∞

0
dk

P(k)
k

× υ0F2
χS[pm, Em(E, pm)]θ (E ), (25)

where P(k) is the normalized experimental neutrino flux.

C. From semi-inclusive to inclusive

Starting from the above expression one can recover the
inclusive cross section by integrating over the variables of
the outgoing nucleon. In this case we use the q system (see
Fig. 22) where the transfer momentum determines the z axis.
This frame presents some special symmetries that simplify
significantly the calculation of the various response functions
that enter in the scattering process. In the Appendix we present
in detail the connection between the variables defined in the k
and q systems and show the explicit calculation of all the weak
hadronic responses. In the q system the outgoing nucleon
momentum is given by

pN = pN (cos φN sin θN e1 + sin φN sin θN e2 + cos θN e3),
(26)

where we have introduced the unit vectors e1, e2, and e3
that define the reference frame (see Fig. 22). Note that the
connection between these unit vectors and the ones introduced
in the k system is simply given by a rotation of the angle
θq contained in the scattering plane. The angle between the
scattering and reaction planes is given by φN while θN deter-
mines the direction of the ejected nucleon momentum pN with
respect to q.

Obviously the use of the k or q systems does not affect the
result for the inclusive cross section since the differential of
the solid angle is the same in all frames connected to each
other by a rotation:

d!L
N = d!

q
N ≡ d!N . (27)

064626-5
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! Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
! Expressing the nuclear model to be succesfully incorporated in neutrino event generators.
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Figure 5.2: DIS process for electromagnetic e-p reactions described in terms of inelastic structure
functions (left panel) and of the quark-parton model (right panel).

5.3.1 Extension to the weak sector

The description of the deep-inelastic regime for weak interactions implies the analysis of an ad-
ditional structure function, F3(W3), related to the parity violating contribution associated to the
V − A interference. An accurate determination of this weak function is hard to achieve from neu-
trino experiments as well as from parity-violating electron scattering [131, 132] due to the large
uncertainties associated to the cross section measurements. Nevertheless, within the quark-parton
model, we can establish a relationship among the electromagnetic and weak structure functions
and between F2 and F3 [74, 133, 134]. This is based on the assumption that the corresponding
structure functions Wi can be written in terms of quark Q and antiquark Q distributions [135, 136]

F2 = νW2 = Q + Q (5.49)
F3 = xνW3 = Q − Q (5.50)

and, hence,
xνW3 = νW2 − 2Q . (5.51)

For electron scattering, the isoscalar F2 structure function of the nucleon, defined as the average
of the proton and neutron structure functions, is given (at leading order in αs and for three flavors)
by

FeN
2 =

1
2

(

F
ep
2 + Fen

2

)

=
5x

18

(

u + u + d + d
)

+
x

9
(s + s) , (5.52)

where u(u),d(d) and s(s) are the distributions for the up, down and strange quarks (antiquarks),
respectively. The quark distributions are defined to be those in the proton and the factors 5/18
and 1/9 arise from the squares of the quark charges. For neutrino scattering, the corresponding F2
structure function is given by

FνN
2 = x(u + u + d + d + s + s) , (5.53)

where quark charges are not considered. In the moderate and large-x region, where strange quarks
are suppressed, the weak and electromagnetic F2 structure functions approximately satisfy,

FeN
2 ≈

5x

18

(

u + u + d + d
)

≈
5

18
FνN

2 . (5.54)

Under this assumption, which has been analyzed in connection with experimental results [135,
137–139], one can readily obtain the weak structure functions from the existing parametrization of
the electromagnetic structure functions and the antiquark distribution.1

1In this work, the inelastic cross sections are only calculated and compared with data for electromagnetic reactions.
Their extension to the weak sector and the construction of the appropriate isoscalar and isovector contributions needed
for CC and NC neutrino reactions will be accounted for in further works.

QE and 2p2h
dominant at T2K kinematics

Resonance production and DIS
important for DUNE
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the momenta k′ and pN and the solid angles !k′ = (θl ,φl ) and
!L

N = (θL
N ,φL

N ) in the factorization approximation is given by
[37]

dσ

dk′d!k′d pN d!L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

∫ ∞

0
dE

×
∫

d3 pmυ0F2
χS[pm, Em(E, pm)]

× δ
(
MA + k − ε′ − EN −

√
p2

m + M2
A−1 − E

)

× δ(k − k′ − pN + pm), (21)

where GF is the Fermi constant, θc is the Cabibbo angle, F2
χ

(χ = +1 for neutrinos and χ = −1 for antineutrinos) is a
reduced single nucleon cross section and υ0 is a kinematic
factor. Those are defined in the Appendix. The spectral func-
tion S[pm, Em(E, pm)], which describes the possibility to find
a nucleon in a nucleus with given momentum and excitation
energy of the residual nuclear system, embodies the nuclear
model dependence. It will be discussed in Sec. III in differ-
ent models. In the case of relativistic nuclear models, as the
relativistic Fermi gas, an extra factor mN/

√
p2

m + m2
N must be

inserted inside the integral, according to the Feynman rules
[43].

The integrals over E and pm can be performed using the
δ functions, and the following analytical expression for the
cross section results:

dσ

dk′d!k′d pN d!L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

× υ0F2
χS[pm, Em(E, pm)] θ (E ), (22)

where the missing momentum and excitation energy in the
previous expression are fixed by the following conditions:

pm = |k′ + pN − k|, (23)

E = MA + k − ε′ − EN −
√

p2
m + M2

A−1

& k − ε′ − EN + mN − Es, (24)

and υ0F2
χ is meant to be evaluated at the values of pm and E

given by Eqs. (23) and (24).
Equations (21) and (22) depend on the variables of the final

lepton and the outgoing nucleon and assume that the neu-
trino energy k, and therefore the transferred four-momentum
(ω, q), are fixed. However, in comparing the results obtained
using this equation with experimental data it is necessary to
take into account that in long-baseline oscillation experiments
the neutrino beam does not have a well-defined energy: a
particle accelerator boosts protons which collide with a target,
for instance graphite or beryllium, producing charged pions
and kaons. Then, these positive (negative) hadrons decay to
produce a flux usually highly dominated by νµ (ν̄µ): de-
pending of the specific experiment, there is a more or less
extended range of initial neutrino energies that participate in
the reaction. As a consequence one needs to average over all
the possible energies to compare with the experimental data.

FIG. 5. Muonic neutrino flux with total area normalized to 1 for
the DUNE and T2K experiments.

As already mentioned, in this work we will concentrate our
attention on two of these experiments, namely T2K [44] and
DUNE [2]. The corresponding fluxes for the muonic neutrinos
are presented in Fig. 5 [45,46].

After including an integration over the initial neutrino
energy in Eq. (22) we get the following flux-averaged semi-
inclusive cross section:
〈

dσ

dk′d!k′d pN d!L
N

〉
= (GF cos θck′ pN )2mN

8ε′EN (2π )6

∫ ∞

0
dk

P(k)
k

× υ0F2
χS[pm, Em(E, pm)]θ (E ), (25)

where P(k) is the normalized experimental neutrino flux.

C. From semi-inclusive to inclusive

Starting from the above expression one can recover the
inclusive cross section by integrating over the variables of
the outgoing nucleon. In this case we use the q system (see
Fig. 22) where the transfer momentum determines the z axis.
This frame presents some special symmetries that simplify
significantly the calculation of the various response functions
that enter in the scattering process. In the Appendix we present
in detail the connection between the variables defined in the k
and q systems and show the explicit calculation of all the weak
hadronic responses. In the q system the outgoing nucleon
momentum is given by

pN = pN (cos φN sin θN e1 + sin φN sin θN e2 + cos θN e3),
(26)

where we have introduced the unit vectors e1, e2, and e3
that define the reference frame (see Fig. 22). Note that the
connection between these unit vectors and the ones introduced
in the k system is simply given by a rotation of the angle
θq contained in the scattering plane. The angle between the
scattering and reaction planes is given by φN while θN deter-
mines the direction of the ejected nucleon momentum pN with
respect to q.

Obviously the use of the k or q systems does not affect the
result for the inclusive cross section since the differential of
the solid angle is the same in all frames connected to each
other by a rotation:

d!L
N = d!

q
N ≡ d!N . (27)
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N ) in the factorization approximation is given by
[37]

dσ

dk′d!k′d pN d!L
N

= (GF cos θck′ pN )2mN

8kε′EN (2π )6

∫ ∞
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dE
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MA + k − ε′ − EN −

√
p2
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A−1 − E
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where P(k) is the normalized experimental neutrino flux.

C. From semi-inclusive to inclusive

Starting from the above expression one can recover the
inclusive cross section by integrating over the variables of
the outgoing nucleon. In this case we use the q system (see
Fig. 22) where the transfer momentum determines the z axis.
This frame presents some special symmetries that simplify
significantly the calculation of the various response functions
that enter in the scattering process. In the Appendix we present
in detail the connection between the variables defined in the k
and q systems and show the explicit calculation of all the weak
hadronic responses. In the q system the outgoing nucleon
momentum is given by

pN = pN (cos φN sin θN e1 + sin φN sin θN e2 + cos θN e3),
(26)

where we have introduced the unit vectors e1, e2, and e3
that define the reference frame (see Fig. 22). Note that the
connection between these unit vectors and the ones introduced
in the k system is simply given by a rotation of the angle
θq contained in the scattering plane. The angle between the
scattering and reaction planes is given by φN while θN deter-
mines the direction of the ejected nucleon momentum pN with
respect to q.

Obviously the use of the k or q systems does not affect the
result for the inclusive cross section since the differential of
the solid angle is the same in all frames connected to each
other by a rotation:
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Basic requirements for a “good” nuclear model to be used in neutrino oscillation analyses:

relativistic (the relevant energies belong to the GeV regime)
compare well with existing electron scattering data
implementable in Monte Carlo generators
consistent description of the full spectrum covered by the  flux (the most challenging)

Intense theoretical activity in the last ~10-15 years aiming at improved description of nuclear effects in different 
energy regions within various theoretical frameworks:

‣  RPA and HF-RPA: Lyon/Paris (Martini and Ericson), Valencia (Nieves and coll.), Gent (Jachowicz and coll.)
‣ Spectral function approach (Rome, Benhar and coll.)
‣ Relativistic Green’s function (Pavia, Giusti and coll.)
‣ “Ab initio” (Los Alamos, Lovato and coll.)
‣ Superscaling “SuSA” approach (MIT, Torino, Sevilla, Granada, Madrid)
     …..
see NuSTEC White Paper for an (almost) up-to-date review:
L.Alvarez-Ruso et al., Prog.Part.Nucl.Phys. 100 (2018) 

Almost all papers up to now have been focussed on inclusive reactions. 
More work on semi-inclusive  is needed to better constrain nuclear models.

ν

Nuclear models
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Formalism
Double differential neutrino (+) or antineutrino (-) Charged Current cross section on a nucleus
Inclusive case: only the final lepton is detected, e.g. (νμ, μ)

ℱ2
± = VCCRCC + 2VCLRCL + VLLRLL + VT RT ± VT′ RT′ 

Rosenbluth-like separation  :  5 response functions                             q// ̂z

Comparison with electron scattering (e, e′ )
dσ

dkedΩe
= σMott (vLRVV

L + vT RVV
T ) only 2 vector responses

Semi-inclusive case   : 10 responses, 5 variables(νl, lN )

[ dσ
dkμdΩμ ]

±

= σ0ℱ2
± ∼ ημνWμν σ0 =

G4
F cos2 θC

2π2 (kμ cos
θ̃μ

2 )
2

Wμν = ∑ δ(Ef − Ei − ω) < f |Jμ(Q) | i >* < f |Jν(Q) | i >

 nuclear current, nuclear statesJμ = Jμ
V + Jμ

A | i, f >
hadronic tensor 

RK = RVV
K + RAA

K , K = CC, CL, LL, T
RT′ = RVA

T′ 

Each response is a component of the hadronic tensor  and depends on two independent variables  Wμν (q, ω)

RK ≡ RK(q, ω)

embodies the nuclear dynamics

ημν leptonic tensor 
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Many high quality electron scattering data can be used not only as a test but also as an input for neutrino cross 
sections [Amaro et al., PRC71 (2005)].  The “Superscaling” behaviour emerges from the analysis of (e,e’) data in the 
quasielastic region. 

SuperScaling 
function f(q, ω; kF) = kF ×

[d2σ/dωdΩe]exp

σeN(q, ω; p = pmin, ℰ = 0)
⟶ f(ψ)

Quasielastic region and SuperScaling

q ≳ 300 MeV/c embodies 
nuclear 
effects

Scaling variable  - or  - is a specific combination of the two variables  and  (analogous to  in DIS)ψ ≡ ψ (q, ω) y(q, ω) q ω x
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Good scaling behaviour at 
 (y<0)  (below QEP).:

the quasielastic data are well 
described by one universal 
function.

At higher kinematics 
contributions beyond QE 
(2p2h, , etc.) break scaling

ψ′ < 0

Δ

SuperScaling 
function f(q, ω; kF) = kF ×

[d2σ/dωdΩe]exp

σeN(q, ω; p = pmin, ℰ = 0)
⟶ f(ψ)

Scaling variable  - or  - is a specific combination of the two variables  and  (analogous to  in DIS)ψ ≡ ψ (q, ω) y(q, ω) q ω xAnalysis of experimental cross sections

Experimental scaling function: F (q, y) =
[dσ/dωdΩ′]exp

σeN (q,ω; p = −y, ε = 0)

σeN (q,ω; p, ε) ≡
1

2π

∫
dφN

EN

q
[Zσep(q,ω; p, ε,φN) +Nσen(q,ω; p, ε,φN)]

Scaling of the first kind: q → ∞ =⇒ F (q, y) −→ F (y) ≡ F (∞, y)

Seattle, 06/12/2016 – p. 15

Day et al., 

Ann.Rev.Nucl.

Part.Sci.40 (1990)

I kind

q ≳ 300 MeV/c embodies 
nuclear 
effects

56Fe

data on iron 
at different 
kinematics

Connection between ‹-A and e-A scattering: SuperScaling

Scaling of second kind: the reduced cross section multiplied by kF
is independent of the specific nucleus: f (y) = kF ◊ F (y)

The scaling variable Â is the relativistic version of y and Â ƒ ≠y/kF
Superscaling is the simultaneous occurrence of both kinds of scaling.
Superscaling is fulfilled at energy loss below the QEP (Â < 0) and broken at
Â > 0

Maria Barbaro Uppsala, NUFACT2017 6 / 37

II kind

q ∼ 1GeV

Donnelly and Sick,

PRL82; PRC60 (1999)

data on 
different nuclei 
at fixed 
kinematics

QEP
         QEP


Scaling of second kind:           
no dependence on the nuclear species                                                                           
at fixed kinematics

f(ψ ; kF) → f(ψ)

I+II kind = SuperScaling

Quasielastic region and SuperScaling
Many high quality electron scattering data can be used not only as a test but also as an input for neutrino cross 
sections [Amaro et al., PRC71 (2005)].  The “Superscaling” behaviour emerges from the analysis of (e,e’) data in the 
quasielastic region. 

Scaling of first kind:   
   

no dependence on kinematics                                                                                                                                                                             
for a specific nucleus

f(q, ω; kF) → f(ψ ; kF)

7



Good scaling behaviour at 
 (y<0)  (below QEP).:

the quasielastic data are well 
described by one universal 
function.

At higher kinematics 
contributions beyond QE 
(2p2h, , etc.) break scaling
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Δ
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2π

∫
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EN
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[Zσep(q,ω; p, ε,φN) +Nσen(q,ω; p, ε,φN)]
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Seattle, 06/12/2016 – p. 15

Day et al., 
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I kind
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effects
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data on iron 
at different 
kinematics

Connection between ‹-A and e-A scattering: SuperScaling

Scaling of second kind: the reduced cross section multiplied by kF
is independent of the specific nucleus: f (y) = kF ◊ F (y)

The scaling variable Â is the relativistic version of y and Â ƒ ≠y/kF
Superscaling is the simultaneous occurrence of both kinds of scaling.
Superscaling is fulfilled at energy loss below the QEP (Â < 0) and broken at
Â > 0
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II kind

q ∼ 1GeV

Donnelly and Sick,

PRL82; PRC60 (1999)

data on 
different nuclei 
at fixed 
kinematics

QEP
         QEP


Scaling of second kind:           
no dependence on the nuclear species                                                                           
at fixed kinematics

f(ψ ; kF) → f(ψ)

Quasielastic region and SuperScaling
Many high quality electron scattering data can be used not only as a test but also as an input for neutrino cross 
sections [Amaro et al., PRC71 (2005)].  The “Superscaling” behaviour emerges from the analysis of (e,e’) data in the 
quasielastic region. 

Scaling of first kind:   
   

no dependence on kinematics                                                                                                                                                                             
for a specific nucleus

f(q, ω; kF) → f(ψ ; kF)

Scaling violations 
beyond the QEP
mainly occur in the 
transverse channel
due to non-QE
mechanisms:

 excitation, 2p2h, …Δ

I+II kind = SuperScaling 7



The “SuSA” and “SuSAv2” Models

“SuSA” model (phenomenological)
[Amaro et al., PRC71 (2007)]

Use the superscaling function extracted from the  
world data analysis and plug it into  

Assumption: the function  is the same for all 
reaction channels (longitudinal, transverse, isoscalar, 
isovector…)

   
  nuclear responses 
 single-nucleon functions   

(e, e′ )
(νl, l−), (ν̄l, l+)

f(ψ)

RK(q, ω) = kF × GK(q, ω) × f(ψ′ )
RK

GK

“SuSAv2”  model (microscopic)
[Gonzalez et al., PRC90(2014), Megias et al., PRD94 (2016)]

A set of scaling functions  is calculated in the 
Relativistic Mean Field model for all reaction channels 
(L/T, isovector/isoscalar, V/A)

The shortcoming of the RMF of being too strong at high 
energies is corrected for by introducing a q-dependent 
blending functions which mixes RMF and RPWIA 
final states. This introduces few parameters, which are 
fitted once and for all to Carbon (e,e’) data. 

Equivalently, one can introduce energy-dependent S and 
V potentials [Gonzalez et al., PRC101 (2020)].

f̃K

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Theoretical description: RMF and SuSAv2 models

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

! SuSAv2 model: lepton-nucleus reactions adressed within the SuperScaling Approach and
the sophisticated Relativistic Mean Field (RMF) theory (FSI) to determine theoretical scaling
functions that reproduce nuclear dynamics. Complete set of scaling functions for all lepton-
nucleus reaction channels (EM, weak, L/T, isovector/isoscalar, V/A).

! RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp)
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41 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data
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The Relativistic Mean Field Model 

The nucleon wave functions are finite nucleus solutions of the 
Dirac equation with phenomenological relativistic scalar and 
vector potentials obtained from a Walecka-type Lagrangian fitted 
to properties of nuclear radii and masses: 
 
                     (iγμ∂μ − M − S + V ) ψ ( ⃗r, t) = 0

The Relativistic Mean Field Approach (RMF)
Large scalar (attractive) and vector (repulsive) potentials that lead to saturation. Nonlocalities
& correlation effects accounted for by the RMF? Important difference with non-relativistic
models

0 1 2 3 4 5
r [fm]

-600

-400

-200

0

200

400

V
 [M

eV
]

Repulsive Vector Potential

Attractive Scalar Potential

C-12

C-12

O-16

O-16

Seattle, 06/12/2016 – p. 5

Important terminology
RELATIVISTIC DISTORTED WAVE IMPULSE APPROXIMATION (RDWIA)
Relativistic distorted (Dirac) wave functions,ΨB ,ΨF and the relativistic nucleon current operator Jµ

p .

RELATIVISTIC PLANE WAVE IMPULSE APPROXIMATION (RPWIA)

Final State Interactions neglected=⇒ΨF -relativistic plane wave (u-Dirac spinor)

Bound Wave Function: ΨB =





φup

φdown



 =





φup

σ·p

E+M+S−V
φup



 = αu+ βv

i.e. ΨB includes negative energy components=⇒ coupling to Dirac sea

PLANE WAVE IMPULSE APPROXIMATION (PWIA)
Negative Energy Components inΨB are projected out
=⇒ Nuclear dynamics and electron-proton
interaction are decoupled. The cross section factorizes:

dσ

dΩedεfdΩp
= Kf−1

recσ
epN(p)

withN(p)-single-particle momentum distribution and σep-single-proton cross section:

σep ∼ ηµνW
µν = ηµν

{

∑

sisf

[

u(pf , sf )J
µ
p u(pi, si)

]

∗
[

u(pf , sf )J
ν
p u(pi, si)

]

}

γ

Q

e'

e

P
A

P
A-1

P
N

σ
eN

~

S

µ

µ

µ

µ

PWIA

~

Seattle, 06/12/2016 – p. 8

Bound wave function

Ejected nucleon wave function is distorted by final-state interactions (FSI).
In the RMF model it is a scattering solution of the same Dirac equation used to describe the bound state.
Orthogonality is preserved: the initial and final nucleon wave functions are eigenstates of the same H

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, "q) =

∫
d"p ΨF ("p+ "q)Ĵµ

NΨB("p)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

FSI

The model: Relativistic Impulse Approximation (RIA)

Nuclear Current =⇒ One-body operator
Jµ
N(ω, "q) =

∫
d"p ΨF ("p+ "q)Ĵµ

NΨB("p)

Scattering off a nucleus=⇒ incoherent sum of single–nucleon scattering

processes
Seattle, 06/12/2016 – p. 3

The RMF model is based on the impulse approximation: 
scattering off a nucleus = incoherent sum of single nucleon scattering processes

S

V
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Relativistic Mean Field Model: superscaling test

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Extension of the SuSAv2-MEC model to other nuclei

SuSAv2 scaling functions for different nuclei

! 2-nd kind scaling within the RMF and RPWIA models.
! kF and Eshift are the only different parameters.
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42 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

! SuSAv2 model: lepton-nucleus reactions adressed within the SuperScaling Approach and
the sophisticated Relativistic Mean Field (RMF) theory (FSI) to determine theoretical scaling
functions that reproduce nuclear dynamics. Complete set of scaling functions for all lepton-
nucleus reaction channels (EM, weak, L/T, isovector/isoscalar, V/A).

! RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp).

RMF predicts fT > fL (∼ 20%) as a pure relativistic effect (distortion of the lower components
of the outgoing ΨN by the FSI with the residual nucleus).
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RMF-FSI: Scattered nucleon w.f. is solution of Dirac eq.
in presence of the same potentials used to describe the
bound nucleon w.f.

15 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

I kind scaling II kind scaling

Violations of I and II kind scaling are compatible with data
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Beyond the Impulse Approximation:  
Meson Exchange Currents and 2p2h excitations

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work
Conclusions and Further Work

Neutrino-nucleus reactions for ν oscillation experiments

Challenges for theoretical nuclear models

! Modeling of nuclear structure giving the initial kinematics and dynamics of bound nucleons
to provide final leptons and hadrons kinematics (full semi-inclusive models) and accurate FSI.
! Expressing the nuclear model to be succesfully incorporated in neutrino event generators.

No clear ID of all
FS particles

⇒ Relevance of 2p2h,
FSI effects, rescatter-
ing processes and π-
production background.

Event topology:
CCQE

CCQE-like = CCQE+CC2p2h
CC0π = CCQE-like with π

absorption background
CC1π
CCDIS

...

82 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

2p-2h
The probe interacts 
with a correlated pair 
of nucleons: beyond IA

Martini et al., Phys.Rev.C 80 (2009) 065501 
first showed that this process contributes significantly to neutrino cross sections in oscillation experiments, 
solving the MiniBooNE “axial mass puzzle”                            

11



Meson Exchange Currents

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

2p-2h MEC for (e, e ′) and CC ν reactions PRD91, 073004 (2015)

! The 2p-2h model is based on the calculation performed by De Pace et al., (2003) for (e, e′)
scattering and extended to the weak sector by Amaro, Ruiz Simo et al. [PRD 90, 033012 (2014);
PRD 90, 053010 (2014); JPG 44, 065105 (2017); PLB 762, 124 (2016)].

! The numerical evaluation of the hadronic tensor W µν
2p2h is performed in the RFG model in a

fully relativistic way without any approximation.

! It is computationally non-trivial and involves 7D integrals of thousands of terms (+1 for

ν-flux) ⇒ High increase of the computing time of R2p2h
K ⇒ Parametrization

! Separation into pp, nn and np pairs in the FS ⇒ also valid for N "= Z (40Ar, 56Fe, 208Pb)
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“Seagull” or “contact” “Pion in flight”

Two-body currents in free space

Meson-exchange currents: the role of 2p2h excitations

Meson-exchange currents: the 2p2h response

In our model the MEC are carried by the pion and � degrees of freedom:

“Seagull” and
“Pion-in-flight”
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Maria Barbaro Cortona, TNPI2017 14 / 38

“Pion pole”
(only for neutrinos, purely axial)

De Pace et al., Nucl.Phys. A726 (2003) 303-326                electromagnetic MEC
Ruiz Simo et al., J.Phys. G44 (2017) no.6, 065105            extension to weak sector

“  pole”Δ
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2p2h MEC many-body diagrams

(a) (b) (c) (d)

FIG. 2: The direct pionic contributions to the MEC 2p-2h response function.

(a) (c) (e) (f)(d)(b)

FIG. 3: The direct pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (c)(b) (d) (e) (f)

FIG. 4: The direct ∆ contributions to the MEC 2p-2h response function.

9

(a) (b) (c) (e)(d) (f)

FIG. 5: The exchange pionic/∆ interference contributions to the MEC 2p-2h response function.

(a) (b) (c) (d) (e) (f)

FIG. 6: The exchange ∆ contributions to the MEC 2p-2h response function.

and ∆ (Fig. 5) we have
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The contribution of the ∆ alone (Fig. 6) is instead
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De Pace et al., NPA726 (2003)

• fully relativistic calculation based on RFG
• all many-body diagrams involving 2 pions included
• each diagram is a 7D integral+flux integration
•  np, nn and pp can be separated
•  numerical results have been parametrised as functions of  for 

use in MC generators
(q, ω)

In the medium, huge amount of many-body diagrams, 
corresponding to the excitation of 2p2h states. 
In the RFG the corresponding hadronic tensor is:

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3p0

2d
3h1d3h2

m4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þδðp0

1 þ p0
2 − h1 − h2 − qÞ;

ð6Þ

where mN is the nucleon mass, V is the volume of the
system, and we have defined the product of step functions

Θðp0
1;p

0
2;h1;h2Þ¼θðp0

2−kFÞθðp0
1−kFÞθðkF−h1ÞθðkF−h2Þ:

ð7Þ

The function rμνðp0
1;p

0
2;h1;h2Þ is the hadronic tensor for

the elementary transition of a nucleon pair with the given
initial and final momenta, summed up over spin and
isospin, given schematically as

rμνðp0
1;p

0
2;h1;h2Þ ¼

1

4

X

s;t

jμð10; 20; 1; 2Þ%Ajνð10; 20; 1; 2ÞA;

ð8Þ

which we write in terms of the antisymmetrized two-body
current matrix element jμð10; 20; 1; 2ÞA, to be specified. The
factor 1=4 accounts for the antisymmetry of the 2p-2h wave
function. Finally, note that the 2p-2h response is propor-
tional to V, which is related to the number of protons or
neutrons Z ¼ N ¼ A=2 by V ¼ 3π2Z=k3F. In this work, we
only consider nuclear targets with pure isospin zero.
In the case of electrons, the cross section can be written

as a linear combination of the longitudinal and transverse
response functions defined by

RL ¼ W00 ð9Þ

RT ¼ W11 þW22; ð10Þ

whereas additional response functions arise for neutrino
scattering, due to the presence of the axial current. The
generic results coming from the phase-space obtained here
are applicable to all of the response functions.
Integrating over p0

2 using the momentum delta function,
Eq. (6) becomes a nine-dimensional integral,

Wμν
2p-2h ¼

V
ð2πÞ9

Z
d3p0

1d
3h1d3h2

m4
N

E1E2E0
1E

0
2

× rμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× Θðp0
1; p

0
2; h1; h2Þ; ð11Þ

where p0
2 ¼ h1 þ h2 þ q − p0

1. After choosing the q direc-
tion along the z axis, there is a global rotation symmetry
over one of the azimuthal angles. We choose ϕ0

1 ¼ 0 and
multiply by a factor 2π. Furthermore, the energy delta

function enables analytical integration over p0
1, and so the

integral is reduced to seven dimensions. In general, the
calculation has to be done numerically. Under some
approximations [25,31,32,36], the number of dimensions
can be further reduced, but this cannot be done in the fully
relativistic calculation.
In this paper, we study different methods to evaluate

the above integral numerically and compare the relativistic
and the nonrelativistic cases. In the nonrelativistic case, we
reduce the hadronic tensor to a two-dimensional integral.
This can be done when the function rμν only depends on the
differences ki ¼ p0

i − hi, i ¼ 1, 2.
As we want to concentrate on the numerical procedure

without further complications derived from the momentum
dependence of the currents, in this paper, we start by setting
the elementary function to a constant rμν ¼ 1. Hence, we
focus on the genuine kinematical effects coming from the
two-particle–two-hole phase space alone. In particular, the
kinematical relativistic effects arising from the energy-
momentum relation are contained in the energy conserva-
tion delta function that determines the analytical behavior
of the hadronic tensor, where the energy-momentum
relation is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

N

p
, and in the Lorentz contraction

coefficientsmN=Ei. Obviously, the results obtained here for
constant rμν will be modified when including the two-body
physical current. But as the final result is model dependent,
it is not possible to disentangle whether the differences
found are due to the current model employed or to the
approximations (relativistic or not) used to perform
the numerical evaluation of the integral. In fact all of the
models of 2p-2h response functions should agree at the
level of the 2p-2h phase-space integral Fðq;ωÞ defined as

Fðq;ωÞ≡
Z

d3p0
1d

3h1d3h2
m4

N

E1E2E0
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0
2

× δðE0
1 þ E0

2 − E1 − E2 − ωÞΘðp0
1; p

0
2; h1; h2Þ;

ð12Þ

with p0
2 ¼ h1 þ h2 þ q − p0

1. Calculation of this function
should be a good starting point to compare and congeni-
alize different nuclear models.

III. NONRELATIVISTIC 2P-2H PHASE SPACE

A. Semianalytical integration

First, we recall the semianalytical method of Ref. [32]
that was used later in Refs. [25,29], for instance, to
compute the nonrelativistic 2p-2h transverse response
function in electron scattering. We shall use this method
to check the numerical 7D quadrature both in the relativistic
and nonrelativistic cases.
We start with the 12-dimensional expression for the

phase-space function, Eq. (6),
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whereas additional response functions arise for neutrino
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This can be done when the function rμν only depends on the
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two-particle–two-hole phase space alone. In particular, the
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

N

p
, and in the Lorentz contraction

coefficientsmN=Ei. Obviously, the results obtained here for
constant rμν will be modified when including the two-body
physical current. But as the final result is model dependent,
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found are due to the current model employed or to the
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Results: 
application of SuSAv2 (RMF+2p2h) model

            1.      validation: inclusive electron scattering

            2.     charged current neutrino scattering
                                    “CCQE-like” or “CC0 ”
                                    no pions in the final state  

           3.    semi-inclusive neutrino scattering  

A(e, e′ )X

A(νμ, μ)X
π

A(νμ, μp)X
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Validation: JLab (e,e’) data on Ar and Ti

Data from H.Dai et al.,  PRC98 (2018);  PRC99 (2019)
Experiment aimed at measuring the Argon spectral function
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MBB et al., PRC99 (2019)

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

Inclusive 12C(e, e ′) cross sections PRD 94, 013012 (2016)
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Validation: Carbon (e,e’)

G.D. Megias et al., PRD94 (2016)

Good agreement with data 

in a wide kinematical region 

Data: Barreau, NPA 402A (1983)
          Day. PRC 48 (1993)

Validation of the SuSAv2 model : (e,e’) on C, O and Ar

G.D. Megias et al., PRD94 (2016)

Good agreement with data for different nuclei in a wide 
kinematical region, with the exception of  the very low q 
regime, where the superscaling approach and IA fail.

Data: Barreau, NPA402 (1983)

The inelastic region is modelled using the Bosted and Christy 
parametrization of inelastic structure functions 
and a generalisation of the scaling variable to a generic 
excitation:  
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FIG. 2: (Color online) Comparison of inclusive 16O(e, e′) cross sections and predictions of the

SuSAv2-MEC model. The separate contributions of the pure QE response (dashed violet line),

the 2p-2h MEC (dot-dashed), inelastic (double-dot dashed) are displayed. The sum of the three

contributions is represented with a solid blue line. The spectral function (SF) result for the QE

cross section is also shown for comparison (dashed green curve). The data are from [30] and [31].

ativistic kinematics, but since it is essentially rooted in PWIA it contains no transverse

enhancement as in SuSAv2 approach and has no two-body MEC or meson production con-

tributions. Its magnitude is therefore generally somewhat smaller than the SuSAv2 QE

contribution and differs slighly in the position of the QE peak. This said, it is encouraging

that the SF and SuSAv2 results for the QE contributions are not dramatically different.

B. T2K neutrino –16O scattering

Results for CC neutrino reactions on 16O are shown in Fig. 3. Each panel presents the

double differential cross section averaged over the T2K muonic neutrino flux versus the

muon momentum for fixed bins of the muon scattering angle. These kinematics correspond

to the T2K experiment [1]. SuSAv2-MEC predictions are compared with data. Contrary to

the (e, e′) cross sections shown in the previous section, here only the QE and 2p-2h MEC

contributions are taken into account, as this is consistent with the analysis of T2K-16O
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Results: comparison with electron and neutrino data

T2K CC0fi ‹µ-C in the SuSAv2-MEC model
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than the ones obtained when FSI are included. Hence the significant discrepancy introduced
by the SF prediction is mostly due to the plane-wave limit approach. Authors in [58] show
that the description of data improves when the hole spectral function is complemented by the
particle spectral function and Pauli blocking. Importantly, a large amount of the data collected
in the T2K experiment shown here falls into this region. The SuSAv2 approach involves an
assumption which is discussed more fully in previous work where the ideas were developed
about how so-called Pauli Blocking can be generalized from the only model where the
concept is well-founded, namely, the extreme RFG model. The results obtained within the
SuSAv2 approach are not in disagreement with the data, even at forward angles. However,
one should still exercise some caution in drawing any final conclusions about how well one
can claim to understand this region, i.e. in any existing model. This problem deserves to be
given greater attention in the future.

3.3. T2K: oxygen versus carbon

To make clear how nuclear effects enter in the analysis of the T2K experiment, in figure 5 we
show the predictions provided by SuSAv2-MEC for the neutrino-averaged double differential
cross sections per neutron in the cases of 12C (red lines) and 16O (blue). Here we show only
the total results of adding the QE and MEC contributions, since the latter are essentially equal
for carbon and oxygen when scaled by the number of neutrons in the two nuclei; the MEC

Figure 5. Similar to figure 3, but now including also the results corresponding to the
T2K-νμ CCQE process on 12C. The data are from [22, 52].
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FIG. 1. (Color online) The MINERνA “QE-like” and “CCQE” double differential cross sections for ν̄µ scattering on hydrocarbon
versus the muon transverse momentum, in bins of the muon longitudinal momentum (in GeV/c). The curves represent the
prediction of the SuSAv2+2p2h-MEC (blue) as well as the separate quasielastic (red) and 2p2h-MEC (orange) contributions.
The data and the experimental antineutrino flux are from Ref. [1]
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Semi-inclusive observables, where one final nucleon is observed in coincidence with the outgoing lepton, are 
more sensitive to the details of the nuclear structure and can better constrain the extraction of the neutrino energy                                                                                                                             

or less extended range of initial neutrino energies that participate in the reaction. As a

consequence one needs to average over all the possible energies in order to compare with the

experimental data. As already mentioned, in this work we will concentrate our attention on

two of these experiments, namely T2K [45] and DUNE [2]. The corresponding fluxes for the

muonic neutrinos are presented in Fig. 5 [46, 47].

FIG. 5. Muonic neutrino flux with total area normalized to 1 for the DUNE and T2K experiments.

After including an integration over the initial neutrino energy in Eq. (22) we get the

following flux-averaged semi-inclusive cross section

⌧
d�
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�
✓(E) , (25)

where P (k) is the normalized experimental neutrino flux.

C. From semi-inclusive to inclusive

Starting from the above expression one can recover the inclusive cross section by inte-

grating over the variables of the outgoing nucleon. In this case we use the q-system (see

Fig. 22) where the transfer momentum determines the z-axis. This frame presents some

special symmetries that simplify significantly the calculation of the various response func-

tions that enter in the scattering process. In Appendix A we present in detail the connection

between the variables defined in the k- and q-systems and show the explicit calculation of

all the weak hadronic responses. In the q-system the outgoing nucleon momentum is given

by

p
N
= pN(cos�N sin ✓Ne1 + sin�N sin ✓Ne2 + cos ✓Ne3) , (26)

12

Semi-inclusive neutrino scattering        A(νμ, μ−p)X

nuclear spectral function

and the kinematic leptonic factors are defined as [38]

VCC =
2

�0
L00, (A41)

VCL =
2

�0
L03, (A42)

VLL =
2

�0
L33, (A43)

VT =
L11 + L22

�0
, (A44)

VTT =
L22 � L11

�0
, (A45)

VTC =
2p
2�0

L01, (A46)

VTL =
2p
2�0

L31, (A47)

VT 0 =
2

�0
L12, (A48)

VTC0 =
2p
2�0

L02, (A49)

VTL0 =
2p
2�0

L32. (A50)

Finally, the reduced single-nucleon cross section that enters in the general expressions for

the semi-inclusive cross sections given in previous sections is defined as
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The di↵erent single-nucleon responses given above in the q-system present a special sym-

metry with respect to the relative orientation between the scattering and reaction planes.

The whole dependence with �N only enters through cos�N for the interference responses:
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and RTL
0

V A
, and through cos 2�N in RTT

V V
and RTT

AA
. Then, after
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elementary cross section
(10 response functions)

S(p, E) = < ψ0 |a†(p) δ[Ĥ − (E0 − E)] a(p) |ψ0 >

joint probability of finding a nucleon of given 
momentum  in the nuclear ground state A and  
reaching final states in the daughter nucleus 
A-1 characterised by missing energy 
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Q

FIG. 1. (color online) Feynman diagram for semi-inclusive charge-changing neutrino reactions

involving a target nucleus with nucleon number A with emission and detection of a nucleon with

four-momentum Pµ
N together with detection of a final-state charged lepton with four-momentum

K 0µ

oxygen spectral function case.

II. SEMI-INCLUSIVE CROSS SECTION

Semi-inclusive CC⌫ scattering is represented by the Feynman diagram shown in Fig. 1,

where Qµ is the four-momentum of the W-boson,

Kµ = (",k) (1)

is the incident lepton four-momentum and

K 0µ = ("0,k0) (2)

is the four-momentum of the lepton in the final state, where " =
p
k2 +m2 and "0 =

p
k02 +m02 are the energies of the incident and final leptons with respective masses m and

m0. Then the four-momentum transfer is

Qµ = Kµ �K 0µ = ("� "0,k � k0) = (!, q) . (3)

The four-momentum of the target nucleus with nucleon number A can be written in its rest

frame as

P µ
A = (MA,0) . (4)
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FIG. 4. (color online) Feynman diagram for a factorized approximation to the semi-inclusive

charge-changing neutrino reaction illustrated for the general case in Fig. 1.

⇥  ̄(PA�1, sA�1;PA, sA)cdJ
µ(�q)deu(pN , sN)e

=
X

sN

ū(pN , sN)aJ
⌫(q)ab

1

8⇡
⇤+(pm)bdS(pm, Em)J

µ(�q)deu(pN , sN)e

=
1

8⇡
Tr

⇥
Jµ(�q)⇤+(pN)J

⌫(q)⇤+(pm)
⇤
S(pm, Em)

=
1

8⇡
wµ⌫(PA � PA�1, Q)S(pm, Em) , (53)

where wµ⌫(PA �PA�1, Q) is an o↵-shell single-nucleon response tensor and S(pm, Em) is the

spectral function. The missing energy is approximated by

Em
⇠= Es + E , (54)

where Es is the separation energy,

E =
q
p2m +W 2

A�1 �
q
p2m +W 0

A�1
2 , (55)

and W 0
A�1 is the invariant mass of the lowest state of the residual system. Energy conserva-

tion requires that

0 =MA + ! �
q
p2N +m2

N �
q

p2m +W 2
A�1

=MA + ! �
q
p2N +m2

N �
q

p2m +W 2
A�1 +

q
p2m +W 0

A�1
2 �

q
p2m +W 0

A�1
2

=MA + ! �
q
p2N +m2

N � E �
q
p2m +W 0

A�1
2 . (56)

So E can also be written as

E = MA + ! �
q
p2N +m2

N �
q
p2m +W 0

A�1
2 . (57)
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reproduced by means of an IPSM approximation with the in-
dividual shells artificially widened using Lorentzians, together
with a representation of contributions from correlations which
in the model of the Rome group are calculated in nuclear
matter. These are then produced for finite nuclei by means of
the LDA. The resulting spectral function is of the form,

SRome(pm, Em) = SIPSM(pm,Em ) + Scorr (pm, Em). (56)

Any constants need to combine the two combinations are
adjusted so that the total satisfies the normalization condition
in Eq. (3). This, and similar approaches, represent the current
state of the art. We will use this spectral function, which we
will refer to as the Rome spectral function, as a benchmark
against which the other models used here will be compared.

IV. RESULTS

A. Spectral functions

We now proceed with a discussion of several types of
spectral functions of varying degrees of sophistication—all
of the spectral functions and cross sections shown here are
for 16O. We consider four models for the spectral functions
beginning with a simple independent-particle shell model with
relativistic mean-field single-particle wave functions (IPSM-
RMF) which captures the basic essentials of the nuclear shell
structure of a nucleus such as 16O. This is followed by going
to the other extreme and discussing the relativistic Fermi gas
model which is designed to contain only the basic properties
of infinite nuclear matter; it is, in fact, a model where A → ∞
and the only aspect of finite nuclei it contains is a scale,
the Fermi momentum kF . This is included here despite its
simplicity (as we shall see, too simple for semi-inclusive
studies) because it forms the basis for many of the event
generators currently being employed. Attempts have been
made to improve on the extreme RFG model by incorporat-
ing a density-dependent Fermi momentum that follows the
ground-state density of a given nucleus, the so-called local

FIG. 6. Independent-particle shell-model spectral function for
16O using RMF wave functions [8] for the hole states.

FIG. 7. Relativistic Fermi gas spectral function for 16O using
kF = 230 MeV/c.

density approximation, and this provides the third model
in the present study. These simplified approaches are then
compared with a state of the art spectral function obtained
by the Rome group. In the following sections we proceed to
obtain the inclusive and semi-inclusive cross sections using
the four models, and there we find that the former do not
differ significantly, although when a nucleon is presumed
to be detected (semi-inclusive reactions), the resulting cross
sections are strongly dependent on the level of sophistication
contained in the various models.

1. IPSM-RMF spectral function

An example of IPSM spectral functions is presented in
Fig. 6. This uses the relativistic mean-field model (RMF) of
Horowitz and Serot [8] for 16O to obtain the wave functions
for the shells occupied by neutrons. In the case of a model
such as this, that produces wave functions in the form of

FIG. 8. Spectral function in the local density approximation. The
coordinate space ρ(r) is obtained from a three-parameter Fermi
function fit to the proton distribution for 16O.
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SRFG(p, E ) = θ(pF − p) δ (E − p2 + m2
N)
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SIPSM(p, E ) = ∑
nlj

(2j + 1) nnlj(p) δ(E − Enlj)
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Figure 1. The 12C realistic spectral function
S(p, E), which is constructed using natural
orbital single-particle momentum distributions
from the Jastrow correlation method and
Lorentzian function for the energy dependence.

Figure 2. Results for the scaling function
f( ) for 12C obtained using HO+FSI and
NO+FSI approaches are compared with the
RFG and SuSA results, as well as with the
longitudinal experimental data.

As pointed out in [23], however, the actual dynamical physical reason of the superscaling is more
complex than that provided by the RFG model.

In Ref. [15] more information about the spectral function was extracted within PWIA from the
experimentally known scaling function. It contains e↵ects beyond the mean-field approximation
leading to a realistic energy dependence and accounts for short-range NN correlations. It is
written in the form:

S(p, E) =
X

i

2(2ji + 1)ni(p)L�i(E � Ei), (4)

where the Lorentzian function is used:

L�i(E � Ei) =
1

⇡

�i/2

(E � Ei)2 + (�i/2)2
(5)

with �i being the width of a given s.p. hole state. In the calculations we used the values
�1p = 6 MeV and �1s = 20 MeV, which are fixed to the experimental widths of the 1p and
1s states in 12C [24]. In Eq. (4) the s.p. momentum distributions ni(p) were taken firstly to
correspond to harmonic-oscillator (HO) shell-model s.p. wave functions, and second, to natural
orbitals (NOs) s.p. wave functions '↵(r) defined in [25] as the complete orthonormal set of s.p.
wave functions that diagonalize the one-body density matrix ⇢(r, r0):

⇢(r, r0) =
X

↵

N↵'
⇤
↵(r)'↵(r

0), (6)

where the eigenvalues N↵ (0  N↵  1,
P

↵N↵ = A) are the natural occupation numbers.
In [15] we used ⇢(r, r0) obtained within the lowest-order approximation of the Jastrow correlation
methods [26]. The realistic spectral function S(p, E) is presented in figure 1, where the two shells
1p and 1s are clearly visible.

For accounting for the FSI we follow the approach given in Ref. [27] concerning two types
of FSI e↵ects, the Pauli blocking and the interaction of the struck nucleon with the spectator
system by means of the time-independent optical potential (OP) U = V � ıW . The latter can
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Figure 3. (left panel) CCQE ⌫µ+12C total cross sections per nucleon displayed versus neutrino
energy E⌫ evaluated using the RFG, HO+FSI, NO+FSI, and SuSA approaches with the standard
value of the axial-vector dipole massMA = 1.03 GeV/c2 are compared with the MiniBooNE [3, 4]
and NOMAD [9] experimental data; (right panel) CCQE ⌫µ+12C total cross section.

predictions in excellent agreement with the experimental data, leaving not much space for large
e↵ects of 2p-2h contributions. HO+FSI and NO+FSI results are higher than the SuSA ones and
lie closer to the RFG results. In the RFG calculation, we use the formalism of [21], assuming a
Fermi momentum of 228 MeV/c and an energy shift of 20 MeV. This is not the same as the RFG
modeling of GENIE [31] and NuWRO [32], which could explain the slight di↵erence between our
RFG results and the ones reported in [1, 2]. Note that the RFG model with the standard value
of the axial mass (black-solid curve) also fits the data, being in very good agreement with the
other approaches. Finally, the spread in the curves corresponding to the four models is less than
7% in the case of neutrinos and less than 5% in the case of antineutrinos. The theoretical results
presented here include the whole energy range for the neutrino. The experimentalists implement
several cuts on the phase space of the data, such as restricting the kinematics to contributions
from neutrino energies below 10 GeV. The impact of such a cut on the results we present here is
smaller than 0.2%, in the worst case. In the experimental analysis, several cuts were imposed to

Figure 4. Flux-folded CCQE ⌫µ+12C (left panel) and ⌫µ+12C (right panel) scattering cross
section per target nucleon as a function of Q2

QE and evaluated in the SuSA, RFG, HO+FSI, and
NO+FSI models; data [1, 2].

Ivanov et al., PRC89 (2014)

12C

Natural Orbits

SNO(p, E ) =
1

2πA ∑
α

(2jα + 1)Nα |ψα(p) |2 LΓα
(E − Ei)

16O

   natural occupation numbers0 ≤ Nα ≤ 1

   Lorentzian distributionLΓ

Natural orbitals include NN short range correlations

Ivanov et al., PRC.89.014607 (2014)
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                                  Momentum distribution

n(pm) = ∫
∞

0
S(pm, Em) dEm

FIG. 8. Top panel: IPSM and RFG momentum distributions normalized according to Eq. (42)

for 40Ar using kF = 0.241 GeV. Bottom panel: Same as in the top panel but for 12C and including

also the NO momentum distribution. The Fermi momentum in this case is fixed to 0.228 GeV.

region where the cross section exists for �L

N
= 165� is significantly reduced compared with

the case at �L

N
= 180�. In the former kinematics, only a few points in the plane (pN , ✓LN)

fulfil the condition that the corresponding missing momentum defined in Eq. (73) is smaller

than kF .

Fig. 10 shows the semi-inclusive cross section for the IPSM model. For �L

N
= 180�

(left panels), the shape is not as simple as for the RFG model because the contour is more

di↵use and the maximum is approximately located in the center of the region where the cross

section exists, although with a distribution that clearly di↵ers from the results corresponding

to �L

N
= 165� (right panels). Here the cross section shows a more symmetric shape with a
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12C 40Ar

J.M. Franco Patino et al., PRC 102, 064626 (2020)

19



                  6th differential semi-inclusive cross sections

J.M. Franco Patino et al., PRC 102, 064626 (2020)

  40Ar(νμ, μ−p)39Cl k′ = 1.5GeV, θμ = 300, ϕL
N = π

RFG IPSM
RPWIA

20

DUNE flux



Comparison with neutrino cross sections versus proton kinematics

 Data from K. Abe et al. (The T2K Collaboration), PRD 98, 032003 (2018)
J.M. Franco Patino et al., PRC 102, 064626 (2020)

Tiny differences between RFG and IPSM. 
Natural Orbit (SRC) predicts lower cross sections.

Warning: RPWIA 
Final State Interactions and 2p2h not yet included (work in progress)
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             Single Transverse Variables

3

FIG. 2. Schematic illustration of the single-transverse kine-
matic imbalance—δφT, δ#pT and δαT—defined in the plane
transverse to the neutrino direction.

transverse projection. The combined effect determines
the evolution of the δαT distribution with p!

′

T. An exam-
ple predicted by NuWro is shown in Fig. 3. At p!

′

T ! pF,
the cross section for δαT at 180 degrees is suppressed
in QE interactions due to Pauli blocking, which leads to
a forward peak in the distribution of δαT at small p!

′

T.
As p!

′

T → Eν , the cross section for δαT at 0 degrees is
suppressed by the conservation of the longitudinal mo-
mentum. Even though the fractions of events in both
extremes of the p!

′

T spectrum change with the neutrino
energy, they are insignificant for the few GeV neutrino
interactions. As a result, the δpT and δαT distributions
are largely independent of Eν , as is shown in Fig. 4, where
the evolution of the distributions with the neutrino en-
ergy is dominated by variations in the strength of the
FSIs.
The transverse momentum imbalance δpT has been

used by the NOMAD experiment to enhance the purity of
the selected QE [15], while the “transverse boosting an-
gle” δαT is proposed here for the first time. Experimen-
tal data on δαT will reveal the accelerating/decelerating
nature of FSIs. Its dependence on p!

′

T, measured in a
detector that has a low momentum threshold, will addi-
tionally provide constraints on Pauli blocking.
Besides the transverse momentum imbalance and

boosting angle, another single-transverse variable can be
defined (Fig. 2):

δφT ≡ arccos
−$p !

′

T · $pN′

T

p!
′

Tp
N′

T

, (6)

which measures the deflection of N′ with respect to $q
in the transverse plane. If the initial-state nucleon were
static and free, δφT would be zero; with nuclear effects,
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FIG. 3. Conditional probability density function of δαT as
a function of the muon pT without FSIs (each slice of pµT is
normalized in such a way that the maximum is 1; the renor-
malized density is shown on the z-axis), predicted by NuWro
for νµ CC QE on carbon (RFG) at neutrino energy of 1 GeV
with FSIs switched off.

the deflection caused by ∆$p adds in a smearing to the
initial distribution of δφT that is determined by $pN. Ex-
periments have measured the δφT distribution in QE-like
events [16] and used it to enhance the QE purity [15, 17].
However, the trigonometric relation illustrated by Fig. 2
shows that δφT scales with δpT/p!

′

T and therefore depends
on the lepton kinematics which are sensitive to the neu-
trino energy. The energy dependence of p!

′

T counteracts
the FSI deflection and the uncertainties from the nuclear
effects and neutrino flux become convolved. The distri-
bution of δφT by NuWro is shown in Fig. 5 for different
neutrino energies. In contrast to the expected evolution
with the FSI strength, the distribution becomes narrower
at higher energy because of the increase of p!

′

T. This
serves as an example of how the neutrino energy depen-
dence can bias a measurement of nuclear effects. Because
of the p!

′

T dependence, the single-transverse variables all
suffer to some extent from a dependence on the neutrino
energy even after kinematic saturation is reached. Nev-
ertheless, the study of nuclear effects can be performed
by restricting p!

′

T.

IV. MODEL PREDICTIONS

In the previous discussion, an equivalence is estab-
lished between the nuclear effects in neutrino-nucleus in-
teractions and the transverse kinematic imbalance. Ini-
tial and final-state effects can be directly observed via
δ$pT, as can be seen by rewriting Eq. 4 into

δ$pT = $pN
T −∆$pT, (7)

where $pN is the momentum of the initial nucleon. In this
section we present the latest predictions of the single-
transverse variables. Interactions of neutrinos from the

Lu et al.,  PRC94, 015503 (2016)Single transverse kinematic unbalance

variables devised in order to enhance nuclear effects (Fermi motion, FSI, 2p2h…)

2

II. NUCLEAR MEDIUM RESPONSE

Consider a CC interaction on a nucleus. At the basic
level the neutrino ν interacts with a bound nucleon N
which then transits to another hadronic state N′:

ν +N → "′ +N′, (1)

where "′ is the charged lepton. In the rest frame of the nu-
cleus, the bound nucleon is subject to Fermi motion with
momentum #pN, and an energy-momentum (ω, #q) carried
by a virtual W -boson (W ∗) is transferred to it as the
neutrino scatters. In characterizing the interaction, the
virtuality Q2 ≡ q2 − ω2 and the invariant mass W of
N′ are used. Following energy-momentum conservation
(the binding energy is neglected compared to the initial
nucleon energy [6]), the energy transfer reads

ω =
Q2 +W 2 −m2

N + 2#q · #pN

2
√

m2
N + p2N

, (2)

∼
Q2 +W 2 −m2

N

2
√

m2
N + p2N

, (3)

where mN is the mass of N, and the last line follows from
averaging out the direction of #pN in Eq. 2, which is a first
order approximation because the polarization term ∼

#q· #pN with opposite orientations of #pN for a give #q does not
exactly cancel as the W ∗-N cross section is slightly dif-
ferent with the varying center-of-mass energy [7]. Below
the deeply inelastic scattering (DIS) region—especially
in QE and RES where W equals the nucleon and dom-
inantly the ∆(1232) resonance mass, respectively—the
cross section is suppressed when Q is larger than the nu-
cleon mass. The hadron momentum in these channels,
as indicated by Eq. 3, “saturates” if the neutrino energy
is above the scale Q2/2mN ∼ O(0.5 GeV) beyond which
the charged lepton retains most of the increase of the
neutrino energy.
Once the final state hadron N′ is produced, it starts

to propagate through the nuclear medium [8]. Under the
assumption that the basic interaction (Eq. 1) and the
in-medium propagation are uncorrelated (i.e., are factor-
ized), the momentum of N′, which depends weakly on
the neutrino energy, completely determines the medium
response, including the in-medium interaction probabil-
ity τf [9] and the energy-momentum transfer (∆E,∆#p)
to the medium (if N′ decays inside the nucleus, the to-
tal effect of all decay products is considered). It is the
latter that leads to nuclear excitation [10] or break-up
and consequently nuclear emission. The nuclear emission
probability, P (∆E,∆#p), correlates the medium response
to the in-medium energy-momentum transfer [11]. The
factorization assumption suggests that P (∆E,∆#p) is in-
dependent of the neutrino energy Eν , which is consistent
with the implementation in the NuWro [12, 13] simula-
tion shown in Fig. 1. In addition, as the neutrino energy
increases, the predicted FSI strength saturates, as is in-
dicated by τf in the figure.
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FIG. 1. Nuclear emission probability as a function of the
in-medium momentum transfer, simulated by NuWro [12] for
νµ CC QE on carbon—nuclear state modeled as relativistic
Fermi gas (RFG) [14]—at neutrino energy of 0.6, 1, 3 and
6 GeV. Multinucleon correlations are ignored. The in-medium
interaction probability τf (extracted from the simulation out-
put throughout this work) is shown in the legend.

III. SINGLE-TRANSVERSE KINEMATIC

IMBALANCE

To make a neutrino energy-independent measurement
of nuclear effects, the in-medium energy-momentum
transfer (∆E, ∆#p) would be the ideal observable; this
however is not experimentally accessible because of the
unknown initial nucleon momentum and the initially un-
known neutrino energy. Instead, ∆#p can be directly in-
ferred from the following single-transverse kinematic im-
balance (Fig. 2):

δ#pT ≡ #p "
′

T + #pN′

T , (4)

δαT ≡ arccos
−#p "

′

T · δ#pT
p"

′

TδpT
, (5)

where #p "
′

T and #pN′

T are the projections of the extra-nucleus
final-state momenta transverse to the neutrino direction.
In particular, −#p "

′

T = #qT, the transverse component of #q.
If the initial-state nucleon were static and free, δpT

would be zero—a feature that is not possessed by other
experimentally accessible variables such as the final-state
momenta. If FSIs could be switched off, δ#pT and δαT

would be the transverse projection of #pN and of the an-
gle between #pN and #q, respectively. Accordingly, to first
approximation, the distribution of δ#pT would be inde-
pendent of the neutrino energy, and that of δαT would
be flat due to the isotropy of Fermi motion. The FSI
acceleration (deceleration) of the propagating N′ adds in
a smearing to δpT and pushes δ#pT forward (backward)
to (−)#qT, making δαT → 0 (180) degrees.
Second order effects that lead to the dependence on

the neutrino energy include the previously discussed po-
larization (see text after Eq. 2), Pauli blocking, and the

3

FIG. 2. Schematic illustration of the single-transverse kine-
matic imbalance—δφT, δ#pT and δαT—defined in the plane
transverse to the neutrino direction.

transverse projection. The combined effect determines
the evolution of the δαT distribution with p!

′

T. An exam-
ple predicted by NuWro is shown in Fig. 3. At p!

′

T ! pF,
the cross section for δαT at 180 degrees is suppressed
in QE interactions due to Pauli blocking, which leads to
a forward peak in the distribution of δαT at small p!

′

T.
As p!

′

T → Eν , the cross section for δαT at 0 degrees is
suppressed by the conservation of the longitudinal mo-
mentum. Even though the fractions of events in both
extremes of the p!

′

T spectrum change with the neutrino
energy, they are insignificant for the few GeV neutrino
interactions. As a result, the δpT and δαT distributions
are largely independent of Eν , as is shown in Fig. 4, where
the evolution of the distributions with the neutrino en-
ergy is dominated by variations in the strength of the
FSIs.
The transverse momentum imbalance δpT has been

used by the NOMAD experiment to enhance the purity of
the selected QE [15], while the “transverse boosting an-
gle” δαT is proposed here for the first time. Experimen-
tal data on δαT will reveal the accelerating/decelerating
nature of FSIs. Its dependence on p!

′

T, measured in a
detector that has a low momentum threshold, will addi-
tionally provide constraints on Pauli blocking.
Besides the transverse momentum imbalance and

boosting angle, another single-transverse variable can be
defined (Fig. 2):

δφT ≡ arccos
−$p !

′

T · $pN′

T

p!
′

Tp
N′

T

, (6)

which measures the deflection of N′ with respect to $q
in the transverse plane. If the initial-state nucleon were
static and free, δφT would be zero; with nuclear effects,
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FIG. 3. Conditional probability density function of δαT as
a function of the muon pT without FSIs (each slice of pµT is
normalized in such a way that the maximum is 1; the renor-
malized density is shown on the z-axis), predicted by NuWro
for νµ CC QE on carbon (RFG) at neutrino energy of 1 GeV
with FSIs switched off.

the deflection caused by ∆$p adds in a smearing to the
initial distribution of δφT that is determined by $pN. Ex-
periments have measured the δφT distribution in QE-like
events [16] and used it to enhance the QE purity [15, 17].
However, the trigonometric relation illustrated by Fig. 2
shows that δφT scales with δpT/p!

′

T and therefore depends
on the lepton kinematics which are sensitive to the neu-
trino energy. The energy dependence of p!

′

T counteracts
the FSI deflection and the uncertainties from the nuclear
effects and neutrino flux become convolved. The distri-
bution of δφT by NuWro is shown in Fig. 5 for different
neutrino energies. In contrast to the expected evolution
with the FSI strength, the distribution becomes narrower
at higher energy because of the increase of p!

′

T. This
serves as an example of how the neutrino energy depen-
dence can bias a measurement of nuclear effects. Because
of the p!

′

T dependence, the single-transverse variables all
suffer to some extent from a dependence on the neutrino
energy even after kinematic saturation is reached. Nev-
ertheless, the study of nuclear effects can be performed
by restricting p!

′

T.

IV. MODEL PREDICTIONS

In the previous discussion, an equivalence is estab-
lished between the nuclear effects in neutrino-nucleus in-
teractions and the transverse kinematic imbalance. Ini-
tial and final-state effects can be directly observed via
δ$pT, as can be seen by rewriting Eq. 4 into

δ$pT = $pN
T −∆$pT, (7)

where $pN is the momentum of the initial nucleon. In this
section we present the latest predictions of the single-
transverse variables. Interactions of neutrinos from the
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Implementation of SuSAv2 in GENIE (S.Dolan, G.Megias, S.Bolognesi)

S. Dolan, G. Megias, S. Bolognesi,  Phys.Rev. D 101 (2020)

Important differences between 2p2h models 
implemented in GENIE

any microscopic calculation but is widely used by the
μBooNE [50] and NOνA [3] experiments. It places a
smooth contribution in the “dip” area of invariant-mass
phase space (between the 1p1h and resonant peaks)
amounting to around 45% of the strength of the default
GENIE RFG 1p1h model. SuSAv2 2p2h and the Valencia
model are both based on the same fundamental RFG-based
2p2h microscopic calculation [51], but are different imple-
mentations of it. A particular difference stems from the
treatment of the Δ-resonance propagator. SuSAv2 2p2h
implements only the real part of the Δ-resonance propa-
gator in the 2p2h pion-exchange diagrams in order to avoid
double counting of possible effects related to Δ-excitation
effects in both 2p2h channel and the inelastic regime, while
the Valencia model implements only partially the real part
and partially the imaginary part, including also higher
energy resonance exchange (ρ). The treatment of the
Δ-resonance propagator in the SuSAv2 2p2h model follows
Refs. [28,51], which are also used by other groups [52–57],
and can be viewed as an empirical approach that provides
very good agreement with ðe; e0Þ scattering data [18,30].
Nevertheless, one could argue that contributions from the
imaginary part of theΔ propagator in a 2p2h RFG approach
do not lead to real pions in the final state. Indeed, the
treatment of the Δ-excitation effects is still an open
question to be addressed by theoretical models as possible
double-counting effects between the 2p2h channels and the
inelastic regime could be considered in the analysis,
depending on how the inelastic response is modeled and
how the medium modification of the Δ decay width is
treated in both 2p2h and pion-production regimes. More
dedicated analyses of the Δ propagator will be addressed in
further works although some preliminary results have been
shown in [32] where overall no large effects are expected
for T2K and MINERvA CC0π inclusive measurements
(≲10%, mainly at large q0 for a given q3 value). Therefore,
the inclusion of SuSAv2 2p2h in GENIE provides a
complementary addition which, crucially, has been care-
fully validated using electron scattering data.
The dependence of the SuSAv2 2p2h, Valencia and

empirical 2p2h neutrino and antineutrino cross sections
with the incoming neutrino energy is shown in Fig. 1. It can
be seen that all the models differ substantially in both
normalization and shape. At higher energy part of the
difference between the SuSAv2 and Valencia models stems
from the fact that the latter is only available up to 1.2 GeV
of momentum transfer but there are also substantial
differences at lower energy as well. This different behavior
is due to fundamental differences in the nuclear response
functions encoded in the hadron tensors. Indeed, while the
only hadron tensor element with explicit energy depend-
ence is the V-A interference term (W3 in the Valencia model
notation in [58]), all of the hadron tensor terms have an
implicit dependency on the energy because of the integra-
tion limits on q3, q0. For a detailed view of the energy

dependence of the various hadron tensors in SuSAv2
model, see [19,46].
More of the fundamental differences between the models

are made evident when comparing the T2K flux-integrated
cross section as a function of q3, q0 as in Fig. 2. Two
components are clearly visible in the Valencia model: one
at relatively high q3, q0, in the region of Δ resonance,
which is related with Δ excitation diagrams (also called Δ
pionless decay) and a second component at lower q3, q0, in
the quasielastic kinematic region. The SuSAv2 2p2h model
instead predicts a single wide region of cross-section
enhancement in the dip region between Δ and quasielastic
kinematics. Figure 3 shows that these starkly different
model predictions are observable in experimentally acces-
sible flux-averaged differential cross sections as a function
of muon kinematics. The largest differences are visible at
larger scattering angles and lower muon momentum.
However, despite their notable size, such differences would
be difficult to observe in any CC0π or inclusive measure-
ment because of the large uncertainty on the 1p1h compo-
nent which dominates the cross section. More exclusive
measurements, including information of the proton(s) in the
final state have been performed in T2K [59] andMINERvA
[60] in order to enhance the sensitivity to 2p2h and will be
discussed in Sec. V.
Although the microscopic 2p2h models available in

GENIE are based on a predominantly inclusive calculation,
they remain able to predict the relative contributions of
neutron-neutron (nn) and neutron-proton (np) initial state
nucleon pairs, which are shown in Fig. 3. While the
variations in the total 2p2h prediction are fairly small, it
is very interesting to note the large differences observed
between the SuSAv2 and Valencia models when consid-
ering the relative contribution of nn and np pairs. These
differences largely stem from the omission of the direct-
exchange interference terms in the Valencia model, which
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FIG. 1. Total 2p2h cross section for muon-neutrino and anti-
neutrino interactions on carbon for the empirical model available
in GENIE, the SuSAv2 2p2h model discussed in this manuscript
and the Valencia model as implemented in GENIE [5,44].

S. DOLAN, G. D. MEGIAS, and S. BOLOGNESI PHYS. REV. D 101, 033003 (2020)

033003-4

We also are grateful to many members of the T2K
collaboration for interesting discussions pertinent to this
work. This work was partially supported by the Spanish
Ministerio de Economia y Competitividad and ERDF
(European Regional Development Fund) under Contract
No. FIS2017-88410-P, and by the Junta de Andalucia
(Grant No. FQM160). G. D. M. acknowledges support
from a Junta de Andalucia fellowship (FQM7632,
Proyectos de Excelencia 2011), P2IO-Paris-Saclay
Grants, and by the European Union’s Horizon 2020
research and innovation program under the Marie
Sklodowska-Curie Grant Agreement No. 839481. We
acknowledge the support of CEA, CNRS/IN2P3 and
P2IO, France; and the MSCA-RISE project JENNIFER,
funded by EU Grant No. 644294, for supporting the EU-
Japan researchers mobility.

APPENDIX A: COMPARISON TO T2K
CC0π INCLUSIVE ANALYSIS AND
IMPLEMENTATION VALIDATIONS

Figure 8 shows a comparison of the SuSAv2 1p1h and
2p2h calculation (in GENIE and directly from the model)
on top of the GENIE absorption prediction to T2K CC0π
inclusive results [71] (i.e., there is no restriction on the
outgoing protons), which are in good agreement with the
data. As has been shown in Fig. 4, the slight discrepancies
in the very forward going bins at intermediate momenta can
be improved by using the full RMF. It can also be seen that
a contribution beyond the 1p1h seems essential at higher
momentum and forward angles and that the SuSAv2 2p2h
prediction appears to have the required strength. However,
as discussed in Sec. IV, it is clear that it is difficult to draw
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FIG. 8. Comparison of the T2K CC0π measurement of the muon-neutrino cross section on carbon with the SuSAv2 model
(1p1hþ 2p2h) and a pion-absorption contribution as implemented in GENIE. The (unstacked) contribution from each interaction mode
is shown separately, as well the total prediction. Comparison between 1p1h and 2p2h GENIE implementation (histograms) and
the microscopic calculations (smooth curves) is also shown for model implementation validation. The goodness of fit is χ2 ¼ 255.8
(67 bins). The data points are taken from [71].
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The SuSAv2 model was implemented from the inclusive results under some approximations.
The implementation can be improved starting from the complete semi-inclusive results.
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Summary and future work 

➡ Validation against (e,e’) data is a solid benchmark for nuclear models to be used in analyses of 
neutrino oscillation experiments. Superscaling sets strong constrains on modeling.

➡ The SuSAv2-MEC model, based on RMF and including FSI and two-body currents, provides a 
satisfactory comparison with both electron and neutrino scattering off different nuclei (carbon, 
oxygen, calcium, titanium, argon). 

➡ Computationally demanding microscopic calculations can be translated into a rather 
straightforward formalism, easier to be implemented in MC event generators.

    -SuSAv2 is now in GENIE (“inclusive” implementation)
    -implementation in NEUT is in progress

➡ Work in progress: 

                   - inclusive neutrino scattering including all inelasticities (resonance,“shallow”, DIS),
                     especially relevant for DUNE

                   - semi-inclusive reactions (more sensitive than inclusive to the details of nuclear models),
                     necessary to compare with future exclusive measurements and to get more reliable
                     implementation in MC generators
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Adding RPA correlations:
- scaling is broken
- poor agreement with data

fit

Testing scaling for (e,e’) in different nuclear models

The Local Fermi Gas 
scales, but its scaling 
function 
is far from data

LFG

RFG

Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

! SuSAv2 model: lepton-nucleus reactions adressed within the SuperScaling Approach and
the sophisticated Relativistic Mean Field (RMF) theory (FSI) to determine theoretical scaling
functions that reproduce nuclear dynamics. Complete set of scaling functions for all lepton-
nucleus reaction channels (EM, weak, L/T, isovector/isoscalar, V/A).

! RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp).

RMF predicts fT > fL (∼ 20%) as a pure relativistic effect (distortion of the lower components
of the outgoing ΨN by the FSI with the residual nucleus).
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Longitudinal and transverse Superscaling

fRFG
L (ψ ′ ) =

3
4 (1 − ψ ′ 2 ) θ (1 − ψ ′ 2 )

From L/T separated data it is found that scaling violations mainly occur in the transverse channel at  
due to non-QE mechanisms (2p2h, ,…)

ψ ′ > 0
Δ

Stringent constraints on nuclear modeling

Longitudinal world data 
J.Jourdan NPA 606 (1996) RFG very poor: overestimates the QEP by ~40% 

and predicts a symmetric scaling function

Connection between ‹-A and e-A scattering: SuperScaling

Superscaling in the Longitudinal and Transverse channels

Define fL = kF RL/GL and fT = kF RT /GT and look at separated L/T data

fT > fL
Violations reside mainly in the transverse channel (2p2h MEC, � resonance excitation,
DIS, ...)

The RFG model predicts fL(Â) = fT (Â) = 3
4 (1 ≠ Â2)◊(1 ≠ Â2), in disagreement with the

experimental data

Maria Barbaro Uppsala, NUFACT2017 7 / 37
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Violations reside mainly in the transverse channel (2p2h MEC, � resonance excitation,
DIS, ...)

The RFG model predicts fL(Â) = fT (Â) = 3
4 (1 ≠ Â2)◊(1 ≠ Â2), in disagreement with the

experimental data
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̂q = ̂z

   
  nuclear responses 
 single-nucleon functions   

RK(q, ω) = kF × GK(q, ω) × f(ψ′ )
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FIG. 1. (Color online) The (e, e′) double differential cross section of carbon, titanium and argon from Refs. [1, 2], compared
with the SuSAv2-MEC prediction. The beam energy is E=2.222 GeV and the scattering angle θ=15.541 deg.
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QE region

“Dip” region

Ordinary second kind 
scaling works well:

 independent of  
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H.Dai et al.,  PRC98 (2018);  PRC99 (2019)

 Fermi momentumηF = kF /mN



Neutrino-nucleus reactions for neutrino oscillation experiments
Theoretical description and Results

Conclusions and Further Work

Theoretical models and Description of 2p2h channels
Inclusive (e, e′) data within the SuSAv2-MEC model
Comparison with CC νµ-nucleus experimental data

Inclusive 12C(e, e ′) cross sections PRD 94, 013012 (2016)

0 0.1 0.2 0.3 0.4
ω (GeV)

0

1000

2000

3000

4000

5000

d2 σ
/d
Ω

dω
 (

nb
/G

eV
/s

r)

E=560 MeV, θ=60
o
, q

QE
=508 MeV/c 

0 0.1 0.2 0.3 0.4 0.5
ω (GeV)

0

10000

20000

30000
2p-2h MEC
Inelastic
QE
Total

E=680 MeV, θ=36
o
, q

QE
=402.5 MeV/c

0.2 0.3 0.4 0.5
ω (GeV)

0

100

200

300

400

500

d2 σ
/d
Ω

dω
 (

nb
/G

eV
/s

r)

E=560 MeV, θ=145
o
, q

QE
=795 MeV/c

0.4 0.6 0.8 1
ω (GeV)

0

50

100

150
E=3595 MeV, θ=25

o
, q

QE
=1640 MeV/c 

24 G. D. Megias: megias@us.es SuSAv2-MEC analysis of T2K and MINERνA data

Validation of the SuSAv2 model : 
Carbon (e,e’)

G.D. Megias et al., 
PRD94 (2016)

Good agreement with data in a wide kinematical region, with the exception of  the very low q regime, where the 
superscaling approach and IA fail.

Data: 
Barreau, NPA402 (1983),
Day, PRC48 (1993)

The inelastic region is modelled using the Bosted and Christy parametrization of inelastic structure functions 
and a generalisation of the scaling variable to a generic excitation:  

w1, w2
ψ (mN) → ψ (m*N)
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FIG. 2: (Color online) Comparison of inclusive 16O(e, e′) cross sections and predictions of the

SuSAv2-MEC model. The separate contributions of the pure QE response (dashed violet line),

the 2p-2h MEC (dot-dashed), inelastic (double-dot dashed) are displayed. The sum of the three

contributions is represented with a solid blue line. The spectral function (SF) result for the QE

cross section is also shown for comparison (dashed green curve). The data are from [30] and [31].

ativistic kinematics, but since it is essentially rooted in PWIA it contains no transverse

enhancement as in SuSAv2 approach and has no two-body MEC or meson production con-

tributions. Its magnitude is therefore generally somewhat smaller than the SuSAv2 QE

contribution and differs slighly in the position of the QE peak. This said, it is encouraging

that the SF and SuSAv2 results for the QE contributions are not dramatically different.

B. T2K neutrino –16O scattering

Results for CC neutrino reactions on 16O are shown in Fig. 3. Each panel presents the

double differential cross section averaged over the T2K muonic neutrino flux versus the

muon momentum for fixed bins of the muon scattering angle. These kinematics correspond

to the T2K experiment [1]. SuSAv2-MEC predictions are compared with data. Contrary to

the (e, e′) cross sections shown in the previous section, here only the QE and 2p-2h MEC

contributions are taken into account, as this is consistent with the analysis of T2K-16O
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Validation of the SuSAv2 model: 
Oxygen (e,e’)

G.D. Megias et al., JPG 46 (2019)
Data: Anghinolfi et al., NPA 602 (1996), O’Connell et al., PRC 35 (1987)

qQE = 372.6 MeV/c

qQE = 447.2 MeV/c qQE = 466.9 MeV/c

qQE = 572.3 MeV/c qQE = 636.0 MeV/c qQE = 797.5 MeV/c



Validation of the SuSAv2 model: 
Ar and Ti (e,e’)

Data from H.Dai et al.,  PRC98 (2018);  PRC99 (2019)
JLab experiment aimed at measuring the Argon p and n spectral functions
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 Data from K. Abe et al. (The T2K Collaboration), PRD 98, 032003 (2018)
J.M. Franco Patino et al., PRC 102, 064626 (2020)

PWIA: at very forward angles the shell-model based  approaches (IPSM and NO) suffer 
from lack of orthogonality between the bound and scattering wave functions.

                              From semi-inclusive to inclusive



Figure 4: Demonstration that RMF can make exclusive (e,e’p) xsec predictions. Fig. 3
from [16].

Figure 5: Demonstration that scaling of the second kind works a little for MEC. Taken
from [1]

6

Only RL and RT contribute in this 
kinematics

The RMF yields good agreement with exclusive 
(e,e’p) data  JM Udias et al., PRC48, 2731 (1993), PRC51 3246 (1995)

Reasonably good agreement
with data under exclusive 

kinematics
spectroscopic factors are now a 

free parameter, fitted to data.

11

free parameter, fitted to data.
RMF tend to imply larger

spectroscopic factors. 
208Pb

J.M. Udias, ECT* meeting, June 2019

Relativistic Mean Field for (e,e’p)
Relativistic Mean Field for (e,e’p)

The RMF prediction has been compared successfully to electron scattering exclusive data in the 90’s 

J.M. Udias et al., PRC 48, 2731 (1993)
                            PRC 51, 3246 (1995)

J.M. Udias et al., PRC 64, 024614 (2001)

16O



A well-known shortcoming of the RFG consists in the fact that the model has states starting with 3-momentum
equal to zero (energy equal to the proton or neutron mass) and going up to the Fermi levels. This corresponds to an
unrealistic negative separation energy [8]. In fact, the Fermi levels in a bound nucleus are negative and have positive
separation energies Sn(N), Sp(Z), Sn(N + 1), Sp(Z � 1), Sn(N � 1) and Sp(Z + 1), respectively, for the six cases of
interest. In order to correct for this flaw, we shift the energies of the protons and neutrons in the triplet of nuclei
using the following prescriptions

H
n(N ; k) = E

n(k)�D
n(N) H

p(Z; k) = E
p(k)�D

p(Z)
H

n(N + 1; k) = E
n(k)�D

n(N + 1) H
p(Z � 1; k) = E

p(k)�D
p(Z � 1)

H
n(N � 1; k) = E

n(k)�D
n(N � 1) H

p(Z + 1; k) = E
p(k)�D

p(Z + 1) ,
(8)

where the o↵sets are given by

D
n(N) = E

n
F (N) + Sn(N) D

p(Z) = E
p
F (Z) + Sp(Z)

D
n(N + 1) = E

n
F (N + 1) + Sn(N + 1) D

p(Z � 1) = E
p
F (Z � 1) + Sp(Z � 1)

D
n(N � 1) = E

n
F (N � 1) + Sn(N � 1) D

p(Z + 1) = E
p
F (Z + 1) + Sp(Z + 1) ,

(9)

and where the usual RFG Fermi energies are given by

E
n
F (N) ⌘ E

n(knF (N)) E
p
F (Z) ⌘ E

p(kpF (Z))
E

n
F (N + 1) ⌘ E

n(knF (N + 1)) E
p
F (Z � 1) ⌘ E

p(kpF (Z � 1))
E

n
F (N � 1) ⌘ E

n(knF (N � 1)) E
p
F (Z + 1) ⌘ E

p(kpF (Z + 1)) .
(10)

Clearly when at the true Fermi surfaces the energies in Eq. (8) become minus the separation energies. For instance,
when k = k

n
F (N) one has

H
n(N ; knF (N)) = E

n(knF (N))� [En
F (N) + Sn(N)] = �Sn(N). (11)

In this work the values of the parameter k
0
F (N,Z), in terms of which all the di↵erent Fermi momenta can be

calculated, are taken from the superscaling analysis [9] of electron scattering data, while Sp,n are the measured proton
and neutron separation energies, taken from the ENSDF database [10]. The numerical values for the cases considered
in this work are listed in Table I. Note that, although not explicitly indicated in our notation for sake of simplicity,
all separation energies depend on both Z and N .

X(A,Z,N) Sn (MeV) Sp (MeV) k0
F (MeV/c) kn

F (MeV/c) kp
F (MeV/c)

C(12,6,6) 18.72 15.96 228 228 228

B(12,5,7) 3.37 14.10 240.02 214.56

N(12,7,5) 15.04 0.60 214.56 240.02

Ar(40,18,22) 9.87 12.53 241 248.23 232.17

Cl(40,17,23) 5.83 11.68 251.93 227.78

K(40,19,21) 7.80 7.58 244.41 236.39

Pb(208,82,126) 7.37 8.00 248 261.77 226.85

Tl(208,81,127) 3.79 7.55 262.46 225.92

Bi(208,83,125) 6.89 3.71 261.07 227.76

TABLE I: Neutron and proton separation energies (Sn, Sp) and Fermi momenta (kF ) used in this work.

Within this model, denoted as Asymmetric Relativistic Fermi Gas (ARFG), we can now calculate the quasielastic
double di↵erential cross section with respect to the outgoing lepton momentum k

0 and scattering angle ⌦ correspond-
ing to inclusive electron scattering, (e, e0), neutral current (NC) neutrino and antineutrino scattering, (⌫, ⌫0) and
(⌫̄, ⌫̄0), and to charged-current (CC) neutrino and antineutrino scattering, (⌫, µ�) and (⌫̄, µ+). In the Rosenbluth
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Asymmetric Fermi gas 
Fermi momentum and separation energies

Two effects of asymmetry:    1.               small unless   

                                               2.              - no effect for NC processes , : the  and                                                    

                                                                               separation energies cancel in 

                                                                             - can be large for CC scattering  

                                                                               even for isoscalar nuclei (C,O)

 

kp
F ≠ kn

F N ≫ Z
Sp ≠ Sn (e, e′ ) (ν, ν′ ) p h

δ(ω − Ep + Eh)
(ν, l)


