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Image from: https://www.nasa.gov/mission_pages/galex/pia14095.html
Image from: https://
en.wikipedia.org/wiki/Redshift

‣  Cosmological redshift

• Shift to longer wavelengths • Cosmological applications

https://www.nasa.gov/mission_pages/galex/pia14095.html
https://en.wikipedia.org/wiki/Redshift
https://en.wikipedia.org/wiki/Redshift


‣  Spectroscopic redshift (spec z) v.s. Photometric redshift (photo z)

Image from: http://spiff.rit.edu/classes/phys301/
lectures/doppler/doppler.html

Image from: https://ogrisel.github.io/scikit-learn.org/
sklearn-tutorial/tutorial/astronomy/regression.html

u g r i z

• Spec z from spectroscopy

• Photo z from broad-band photometry

• Photo z from images

http://spiff.rit.edu/classes/phys301/lectures/doppler/doppler.html
http://spiff.rit.edu/classes/phys301/lectures/doppler/doppler.html
https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/regression.html
https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/regression.html


‣  Photometric redshift (photo z) estimation as a classification 
problem supervised by spectroscopic redshift (spec z)









Split the learning of representation and classification.

Dispersion / softening 
of over-confidence or 
any other adjustment

Over-confidence / imbalance / 
non-uniformity within data 
(may not be due to overfit)

Bias Cause Correction

Distribution-
induced residual

Unbalanced 
number density

Use near-flat 
distribution

Boundary-
induced residual Boundary effect Shift labels

Mode collapse Local over-
confidence Use soft labels



Biases are reduced by applying our correction method.
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- Two forms of biases. 

- Key 1: split the learning of representation and classification. 

- Key 2: biases are reduced via balancing the training data. 

- Prospect

• Redshift-dependent residuals 
   (distribution-induced & boundary-induced) 
• mode collapse

• The representation potentially contains all required information 
(though biased). 
• Fine-tune the classification part for resolving biases or other needs.

• Balance the number density of the training data. 
• Adjust the target output (= shift & soften labels).

• May be combined with other photo-z methods. 
• May be generalized to regression problems and used in other applications.

‣  Conclusion
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Two perspectives (dilemma: not compatible unless perfect)

• Individual bias (w.r.t spec z): bias of a single estimate entered 
at a spec z (e.g., applied to SN host galaxies). 
• Bulk bias (w.r.t photo z): bias of the average of estimates in a 

photo-z bin (e.g., applied to weak lensing).

Correction procedure

• Correct the individual bias (w.r.t spec z) with our method. 
• Correct the bulk bias (w.r.t photo z) with further calibration if needed.



➡ Correct residuals w.r.t spec z

• Our method with neural networks

➡ Correct residuals w.r.t photo z

1. First correct residuals w.r.t spec z 
2. Estimate the sample distribution of spec z for the test set

Either: 

σ =
1

N − 1 ∑
n

(zphoto
n − zspec

n )2

̂pspec
test (z |r) = pspec

training(z |r)

Or:  
• Estimate errors (per magnitude) using the training set 
• Deconvolve errors from pphoto

test (z |r)

3. Re-sample from the training set according to  
4. For each photo z, correct the residual for the test set according to the 
residual estimated on the re-sampled training set

̂pspec
test (z |r)

̂pspec
test (z |r)

Assumption: the training set and the test set at each (z, r) cell are produced 
from the same sampling regardless of the number density.



Our method

• Factorize PDFs into 
multiple magnitude slices 

• Train with all data

• Factorize PDFs into 
multiple magnitude slices 

• Fine-tune Estimator with a 
balanced subset

• Factorize PDFs into 
multiple magnitude slices 

• Extend z range 
• Use soft labels 
• Shift labels 
• Re-train Estimator with a 

balanced subset

➡ Prune out interactions 
among different magnitudes 

➡ Regularize

➡ Correct distribution-
induced residuals 

➡ Correct differences 
among subsamples

➡ Correct boundary-
induced residuals 

➡ Correct mode collapse

Baseline
• Train with all data

∑
r

p(r |θ)p(z |r, θ)



Factorization w.r.t r-band magnitude with multiple outputs

Exclusive
Transitional

11 magnitude slices 6 outputs for z

Flat (confusion)

One-hot / dispersed

1 output for magnitude

∑
r

p(r |θ)p(z |r, θ)





Assumption: same labelling dispersion along z for a given r.

min
σ1

{∫ − pspec(z)log(pphoto(z) * N(0,σ1))dz}



Correction of boundary-induced residuals

• Extend the range.

z_min z_max

Lower bound = z_min Upper bound != z_max

• (Re-)allocate the label at the center-of-mass of the truncated Gaussian                   .

σ2 =
1
N ∑

n

(zphoto
n − zspec

n )2

N(zspec
n , σ2)


