Estimating Photometric Redshifts with Convolutional Neural Networks and Galaxy Images: A Case Study of Resolving Biases in Deep Learning Classifiers

Qiufan Lin¹ Advisors: Dr. Dominique Fouchez¹, Dr. Jérôme Pasquet²

¹Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille, France ²UMR TETIS, Univ. Montpellier; AgroParisTech, Cirad, CNRS, Irstea, Montpellier, France

Cosmological redshift

• Shift to longer wavelengths

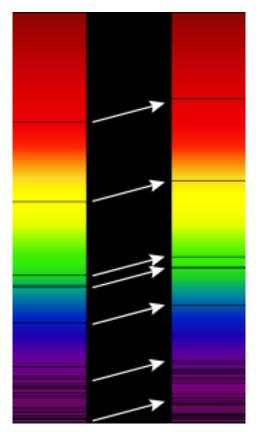


Image from: <u>https://</u> en.wikipedia.org/wiki/Redshift

• Cosmological applications

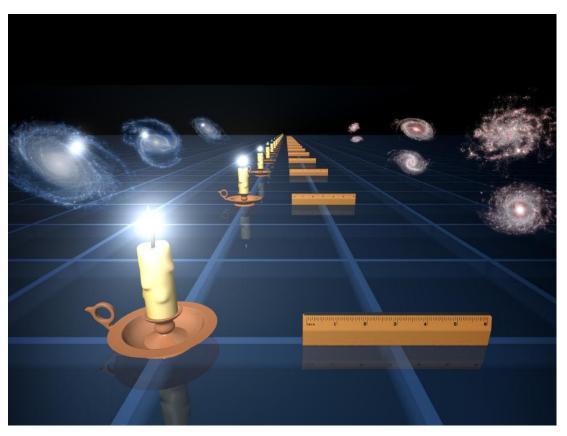
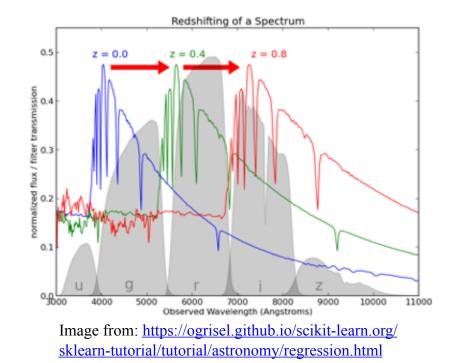


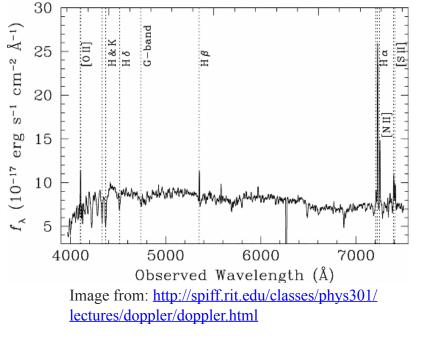
Image from: https://www.nasa.gov/mission_pages/galex/pia14095.html

Spectroscopic redshift (spec z) v.s. Photometric redshift (photo z)

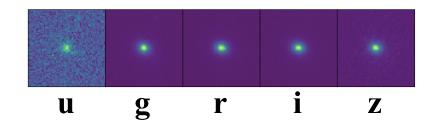


• Photo z from broad-band photometry

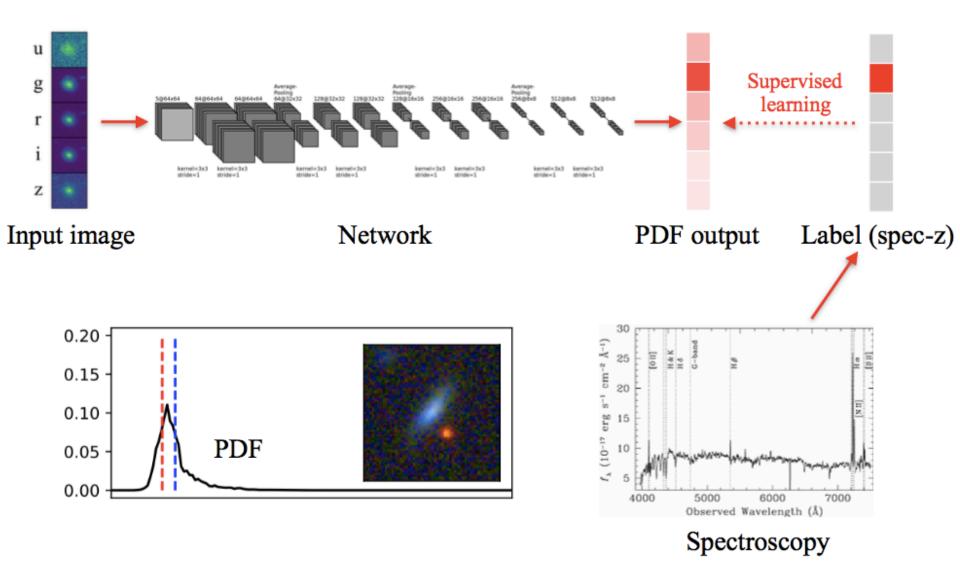
• Spec z from spectroscopy



• Photo z from images

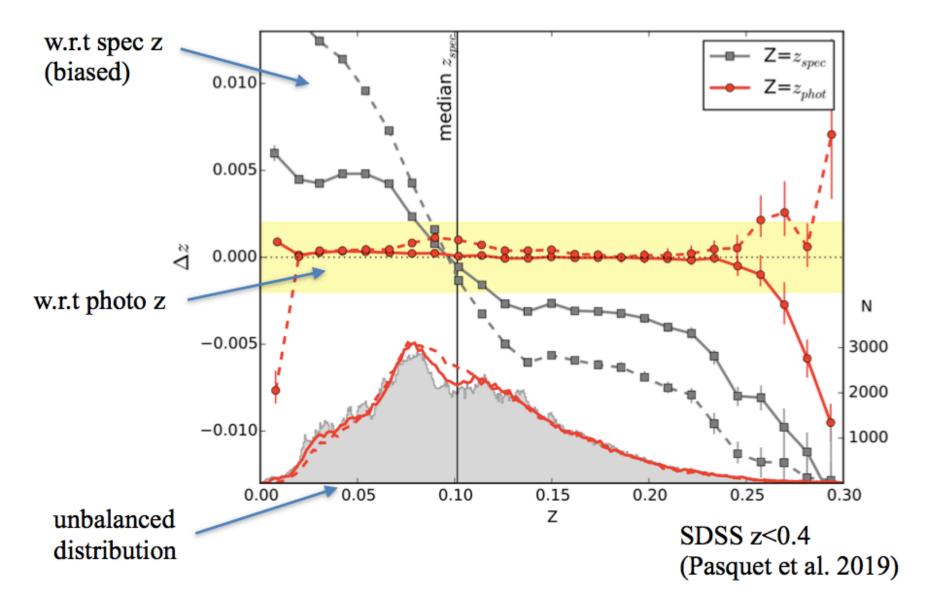


 Photometric redshift (photo z) estimation as a classification problem supervised by spectroscopic redshift (spec z)

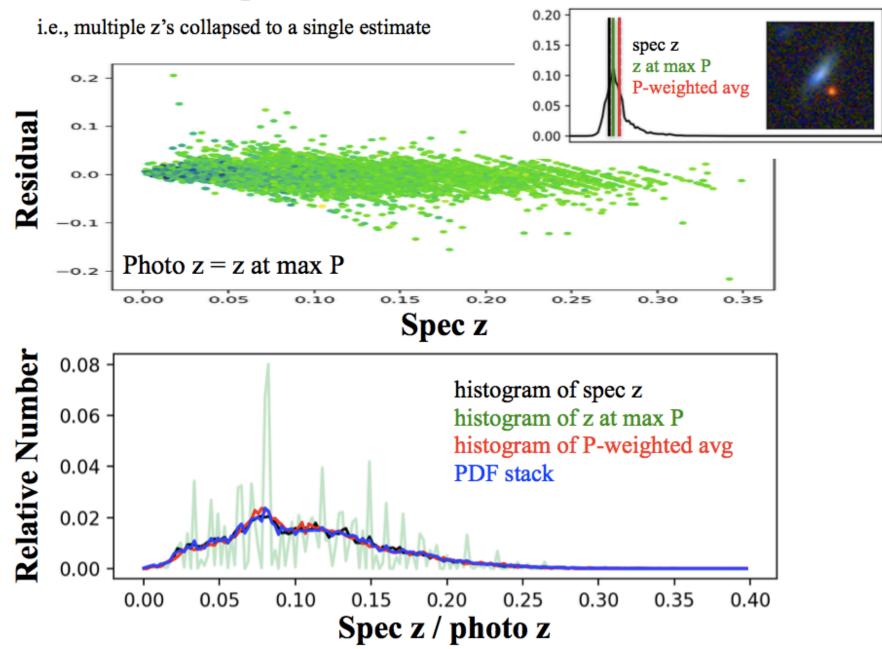


Bias 1: residual as a function of redshift (spec z / photo z)

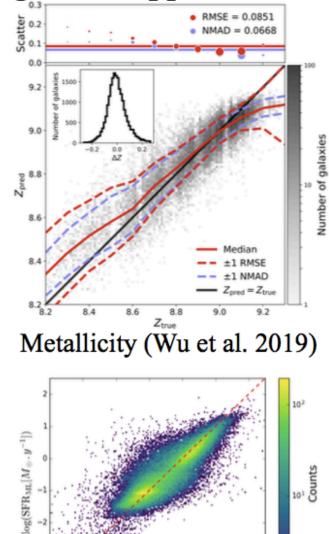
Residual = $(z_photo - z_spec) / (1 + z_spec)$

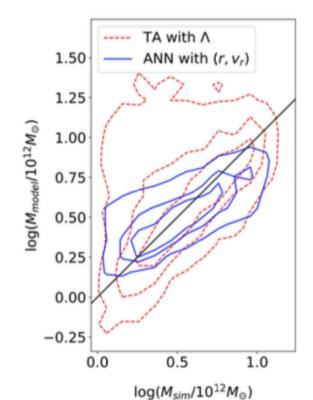


Bias 2: mode collapse

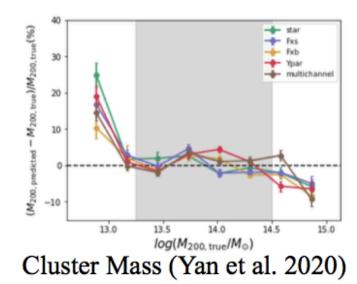


Biases exist in various classification & regression applications





Mass of the Local Group (McLeod et al. 2017)

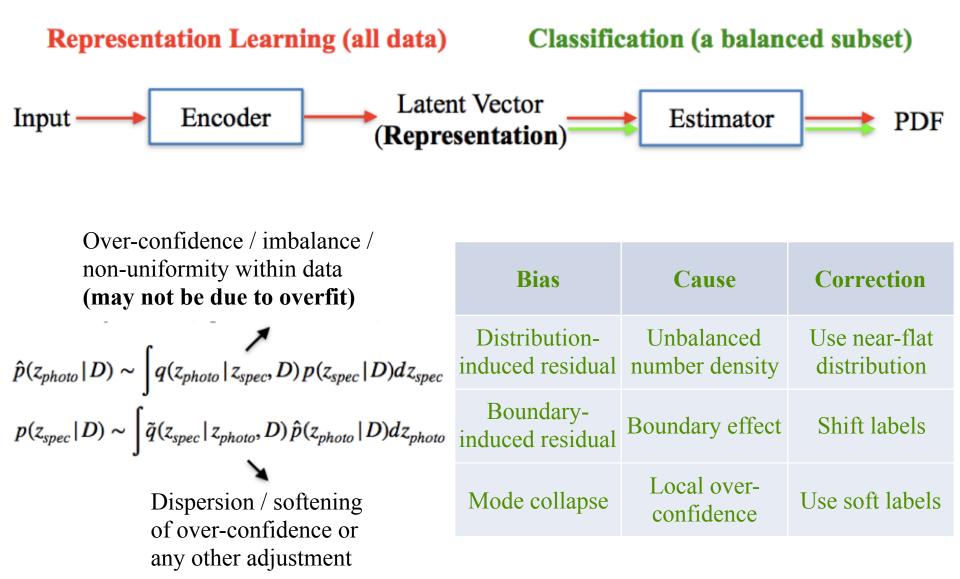


Star Formation Rate (Bonjean et al. 2019)

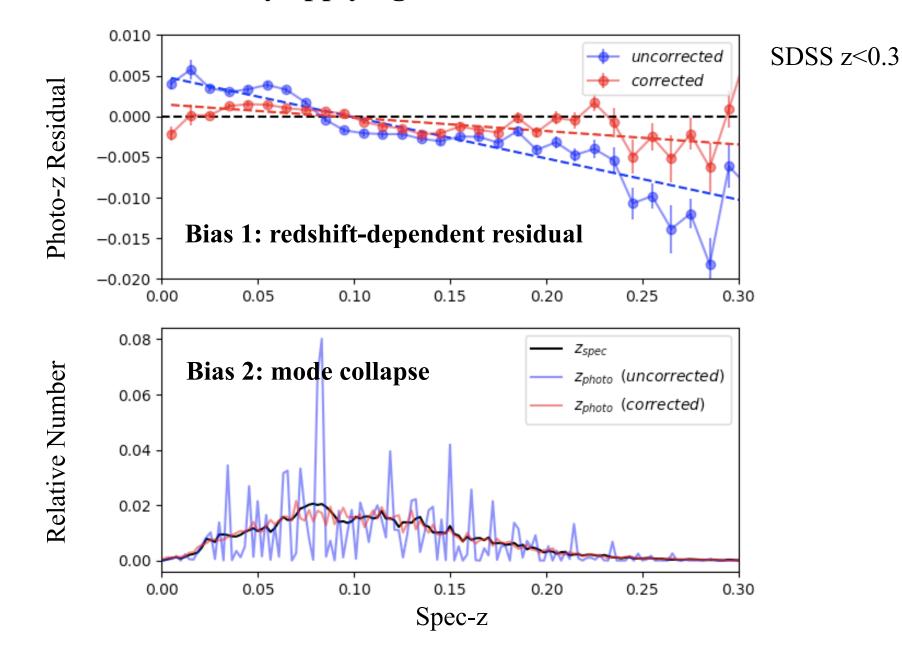
-2

 $^{-1}$

Split the learning of representation and classification.



Biases are reduced by applying our correction method.



Conclusion

- Two forms of biases.

- Redshift-dependent residuals (distribution-induced & boundary-induced)
- mode collapse

- Key 1: split the learning of representation and classification.

- The representation potentially contains all required information (though biased).
- Fine-tune the classification part for resolving biases or other needs.

- Key 2: biases are reduced via balancing the training data.

- Balance the number density of the training data.
- Adjust the target output (= shift & soften labels).

- Prospect

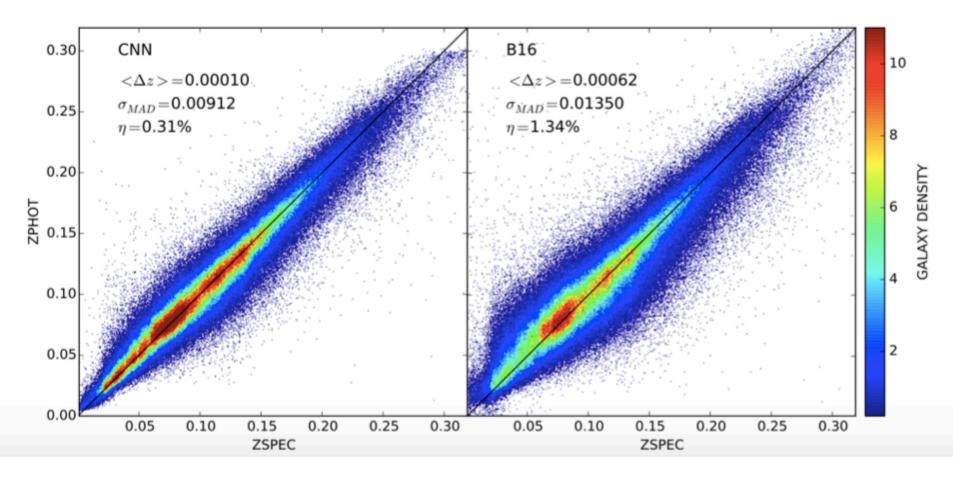
- May be combined with other photo-z methods.
- May be generalized to regression problems and used in other applications.

Acknowledgement

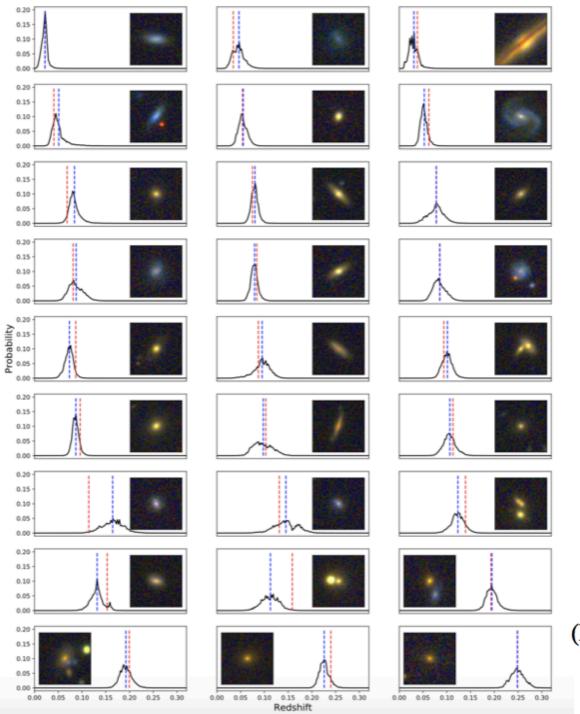
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No713750. Also, it has been carried out with the financial support of the Regional Council of Provence-Alpes-Côte d'Azur and with the financial support of the A*MIDEX (n° ANR-11-IDEX-0001-02), funded by the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR).

Back-up slides

Photometric redshift estimation

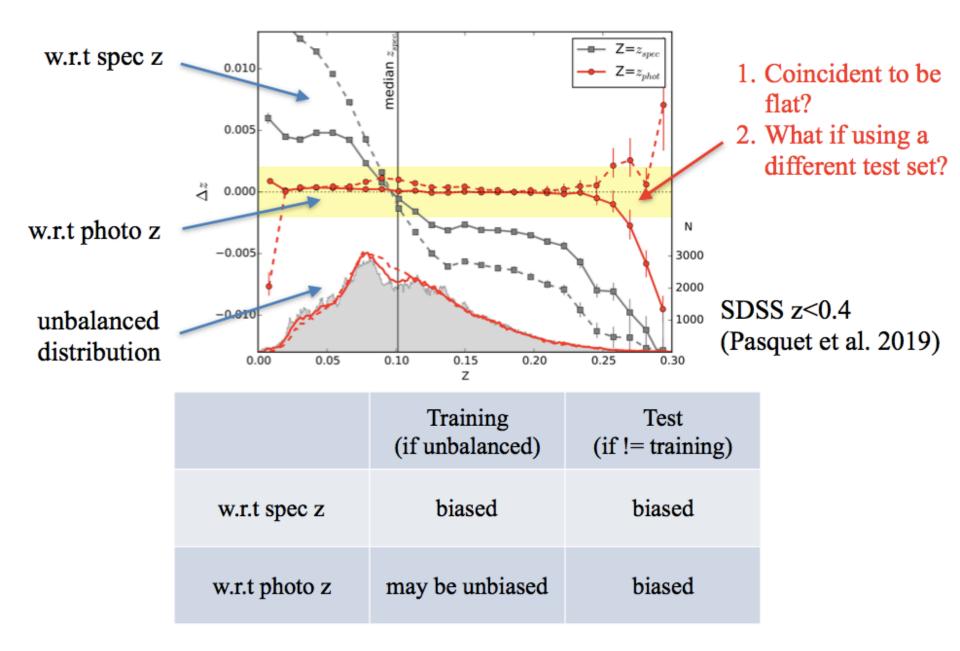


(Pasquet et al. 2019)



(Pasquet et al. 2019)

Bias 1: residual as a function of redshift (spec z / photo z)



Two perspectives (dilemma: not compatible unless perfect)

- Individual bias (w.r.t spec z): bias of a single estimate entered at a spec z (e.g., applied to SN host galaxies).
- Bulk bias (w.r.t photo z): bias of the average of estimates in a photo-z bin (e.g., applied to weak lensing).

$$\langle \Sigma_{\rm cr} \rangle \propto \int_{z_{\rm Lens}}^{\infty} \mathrm{d}z \, p(z) \left(\frac{D_{\rm d}(z_{\rm Lens}) D_{\rm ds}(z_{\rm Lens}, z)}{D_{\rm s}(z)} \right)$$

Correction procedure

- Correct the individual bias (w.r.t spec z) with our method.
- Correct the bulk bias (w.r.t photo z) with further calibration if needed.

➡ Correct residuals w.r.t spec z

• Our method with neural networks

Assumption: the training set and the test set at each (z, r) cell are produced from the same sampling regardless of the number density.

Correct residuals w.r.t photo z

- 1. First correct residuals w.r.t spec z
- 2. Estimate the sample distribution of spec z for the test set $\hat{p}_{test}^{spec}(z | r)$

Either: $\hat{p}_{test}^{spec}(z \mid r) = p_{training}^{spec}(z \mid r)$

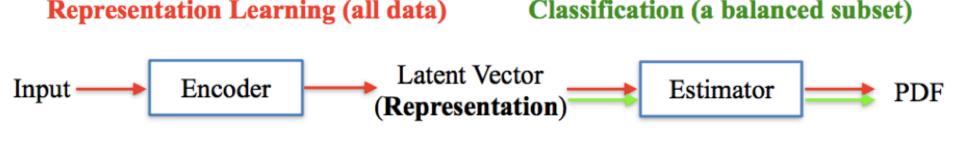
Or:

- $\int \frac{1}{(z_n^{photo} z_n^{spec})^2}$ • Estimate errors (per magnitude) using the training
- Deconvolve errors from $p_{test}^{photo}(z | r)$

set
$$\sigma = \sqrt{\frac{1}{N-1} \sum_{n} (z_n^{photo})}$$

3. Re-sample from the training set according to $\hat{p}_{test}^{spec}(z \mid r)$

4. For each photo z, correct the residual for the test set according to the residual estimated on the re-sampled training set



Our method

- Prune out interactions among different magnitudes
- ➡ Regularize
 - Factorize PDFs into multiple magnitude slices
 - Train with all data

$$\sum_{r} p(r \,|\, \theta) p(z \,|\, r, \theta)$$

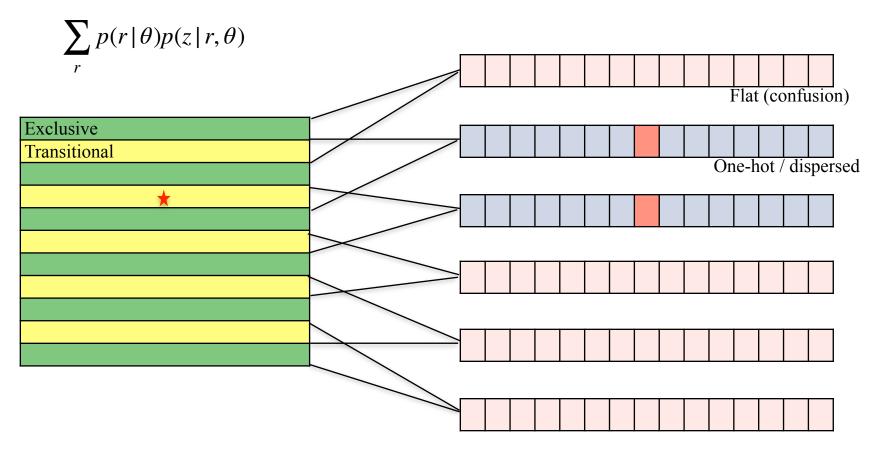
Baseline

• Train with all data

- Correct distributioninduced residuals
- ➡ Correct differences among subsamples
- Factorize PDFs into multiple magnitude slices
- Fine-tune Estimator with a
 balanced subset

- Correct boundaryinduced residuals
- ➡ Correct mode collapse
- Factorize PDFs into multiple magnitude slices
- Extend z range
- Use soft labels
- Shift labels
- Re-train Estimator with a balanced subset

Factorization w.r.t r-band magnitude with multiple outputs



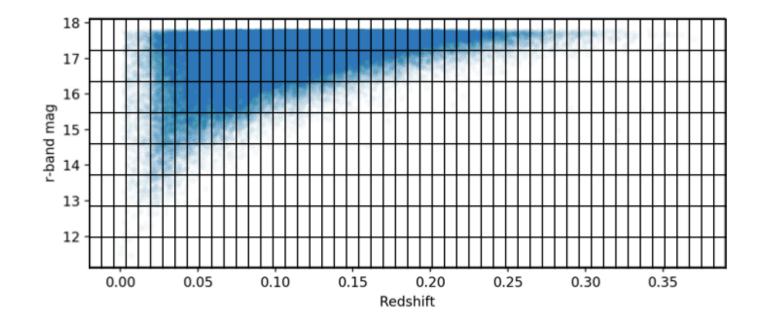
11 magnitude slices

6 outputs for z

1 output for magnitude

Correction of distribution-induced residual: construct a balanced (near-flat) distribution

- Divide the whole training set into two-dimensional (z, r) subregions.
- Balanced set: randomly select N events in each subregion (N <= Nth).

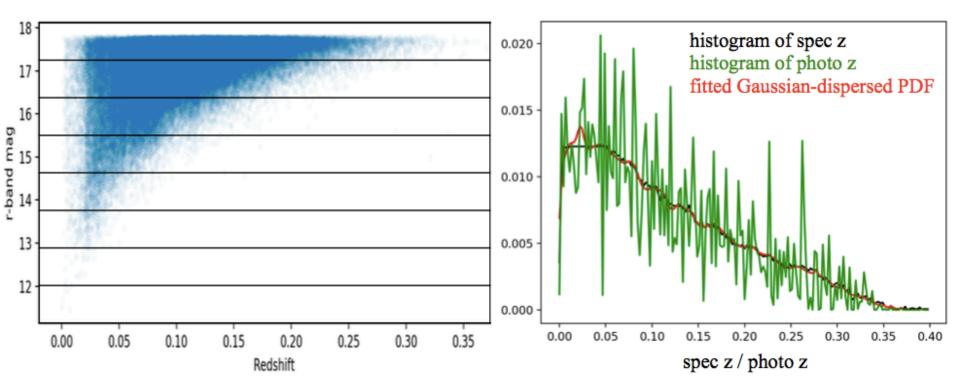


Correction of mode collapse: introduce dispersion to labels

- Model $\tilde{q}(z|z^*, D)$ as Gaussians. $\left[\tilde{q}(z|z^*, D) \,\delta(z^*|D) \,dz^*\right]$
- Fit with the histogram of spec z and the histogram of photo z (pre-estimated).

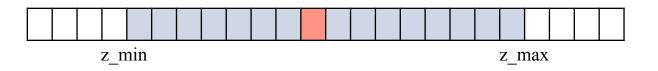
 $\min_{\sigma_1} \left\{ \int -p^{spec}(z) \log(p^{photo}(z) * N(0,\sigma_1)) dz \right\}$

Assumption: same labelling dispersion along z for a given r.



Correction of boundary-induced residuals

• Extend the range.



• (Re-)allocate the label at the center-of-mass of the truncated Gaussian $N(z_n^{spec}, \sigma_2)$.

