DE LA RECHERCHE À L'INDUSTRIE

RAINFROG

AUTOMATIC DETECTOR RECOGNITION ON THE ATLAS/NSW FABRICATION FACILITY AT SACLAY

<u>R</u>OBUST <u>AI</u> <u>N</u>ETWORK <u>F</u>OR <u>R</u>ECOGNITION OF <u>O</u>BJECTS ON <u>G</u>ANTRY

<u>R</u>ÉSEAU <u>A</u>RTISANAL D'<u>I</u>NFÉRENCE <u>N</u>EURONALE <u>F</u>ACILITANT LA <u>R</u>ECONNAISSANCE D'<u>O</u>BJETS, SANS <u>G</u>ARANTIE

INSTITUT DE RECHERCHE SUR

THE ATLAS NEW SMALL WHEELS DETECTOR PROGRAM

LHC upgrade

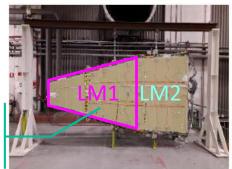
ez

2 detector « wheels », 10 m diameter

LS2

32 Micromegas tracking detector modules

4 different shapes


4 different production sites

Status as of march '21 All 4 sites have terminated production

1st wheel being assembled at CERN

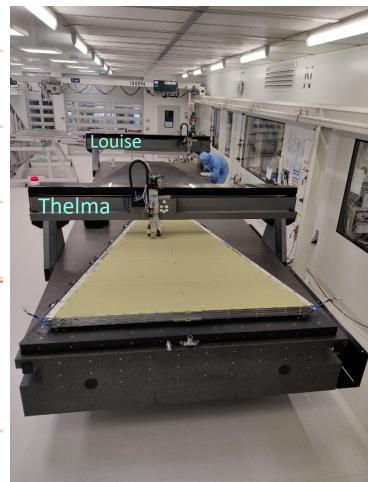
The modules built at Saclay (shape: Large Module 1)

Large and small « petals »

ATLAS/NSW - Rainfrog - 16-17/03/2021 - Michel MUR

Saclay Irfu site context Fabrication & test of detector elements in the CICLAD clean room facility at Saclay

NSW LM1 Micromegas detectors are scanned for planarity on 2 instrumented gantry granite tables


Planarity scans occur at various stages of construction and for final QC acceptance

A large variety of scans requiring different settings

Problem Can we automatically find the active configuration, just by looking at the current part with a camera?

Algorithmic image processing would be very complicated.

Can we handle this by machine learning?

A completed module being scanned for planarity with a contactless optical sensor

Cea

A VARIETY OF PLANARITY SCANS (1/2, PANELS)

A Module is a sandwich of 5 composite PCB-Al Honeycomb-PCB Panels

DriftB

RdoutE

DriftC

DriftF

RdoutS

Drift panel

Readout panel

Readout pane

Drift panel

Drift panel (double)

4

A VARIETY OF PLANARITY SCANS (2/2, MODULE)

Module

31 distinct	5 panel types	6 scans each
scan configurations	1 module	1 single scan

Can we identify the current configuration automatically, just by looking* at the object laid on the table?

Machine Learning? Where to take photos? How to combine them?

* With a camera

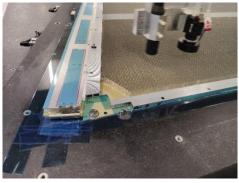
LOOK AND GUESS

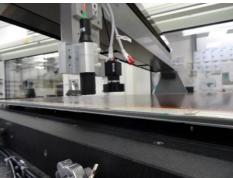
What needs to be discovered The **type** and **subtype** of the object: drift panel *front/central/back*, readout panel *eta/stereo*, module

The nature of the **surface** *pcb/honeycomb/resist/copper*

Which side of the part is exposed for measurement A/B

The **height** at which the part is exposed


A non standard image classification problem


A total of 20 categories in 5 families

Will pick the highest score in each family

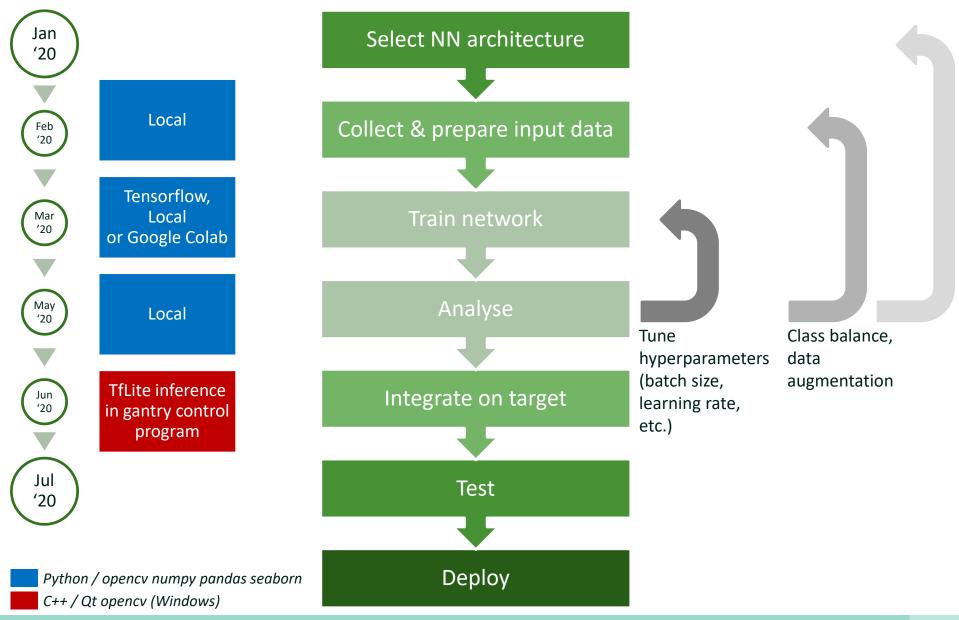
Categories are non exclusive, showing inclusion and intersection across **families**

A variety of configurations of parts, sides, surfaces, heights

Instead of directly assigning the final configuration, make a prediction for intermediate family classes

20 different categories in 5 families	topc (3)	DriftP, RdoutP, Module
	type (6)	RdoutS, RdoutE, DriftF, DriftC, DriftB, modulE
	surf (5)	PcbInt, HoneyC, Resist, PcbExt, Cathod
	side (2)	Axposd, Bxposd
	zpos (4)	PcbSol, PnlSol, PnlPad, MdlPad

After fusion, if the 5 family predictions are found consistent, the final configuration will be assigned with a simple look up table

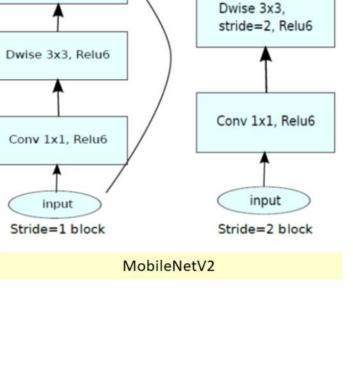

+9 control categories in	ploc (6)	photoA, photoB, photoC, photoD, photoE, photoF
2 families	pcam (3)	MikeMi, SonyDS, FliCam

 Take photos at 6 strategic locations 	A B, C, E D	Pcb frontier & ea F Corners Interconnect	
Independently infer for each photo			
 Fuse 6 scores for final decision 			
This example session	S23_Bo	nPads	F E

SELECTED NN ARCHITECTURE: MOBILENETV2

conv 1x1, Linear

Input	Operator	t	с	n	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^2 \times 32$	bottleneck	1	16	1	1
$112^2 \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^2 imes 32$	bottleneck	6	64	4	2
$14^2 imes 64$	bottleneck	6	96	3	1
$14^2 imes 96$	bottleneck	6	160	3	2
$7^2 imes 160$	bottleneck	6	320	1	1
$7^2 \times 320$	conv2d 1x1	-	1280	1	1
$7^2 imes 1280$	avgpool 7x7	-	-	1	-
$1\times1\times1280$	conv2d 1x1	-	k	-	


MobileNetV2 Overall Architecture

MobileNetV2 (11 layers)

MobileNetV2 bypass & add layers

MobileNetV2: Inverted Residuals and Linear Bottlenecks, arXiv:1801.04381

Add

conv 1x1, Linear

1- Load a headless pre-trained model from an open depository

```
import tensorflow as tf
import tensorflow_hub as hub
IMG_SIZE = 224 # Specify height and width of image to match the input format of the model
CHANNELS = 3 # Keep RGB color channels to match the input format of the model
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, CHANNELS)
...
feature_extractor_url = "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4"
feature_extractor_layer = hub.KerasLayer(feature_extractor_url, input_shape=IMG_SHAPE)
```

This model was previously trained on the ImageNet database (14 197 122 images in 21841 categories)

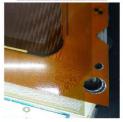
2- Add a classification head to the model, it will produce our label scores as outputs

```
model = tf.keras.Sequential([
    feature_extractor_layer,
    layers.Dense(1024, activation='relu', name='hidden_layer'),
    layers.Dense(nmbrOfLabels, activation='sigmoid', name='output')
])
```

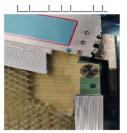
2 fully-connected (dense) layers added

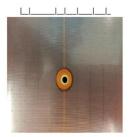
3- Model summary

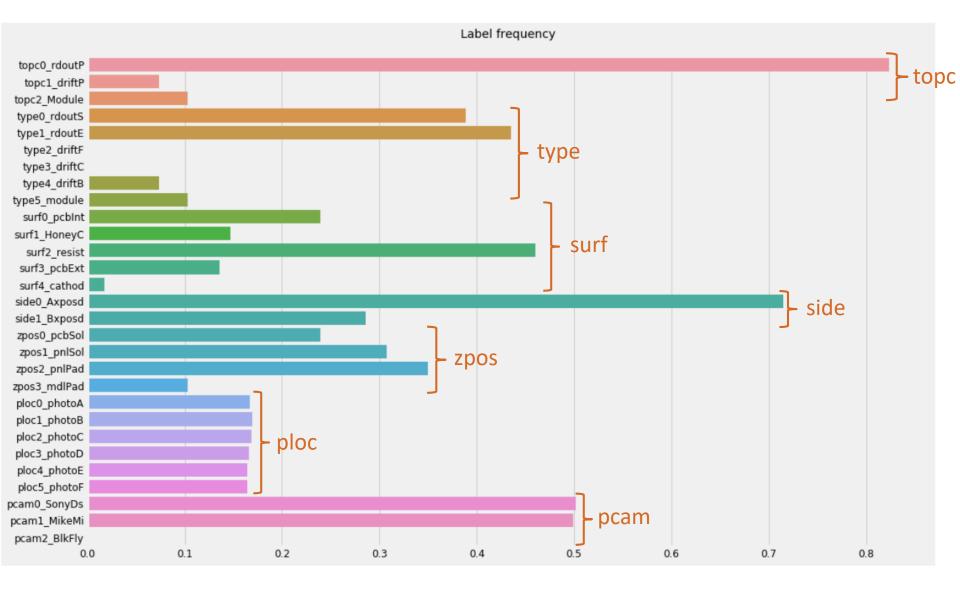
Layer (type)	Output Shape	Param #	
mobilenetv2_1.00_224 (Model)	(None, 7, 7, 1280)	2257984	
hidden_layer (Dense)	(None, 7, 7, 1024)	1311744	= 1024 * (1280 + 1)
output (Dense)	(None, 7, 7, 29)	29725	= 29 * (1024 + 1)
Total params: 3,599,453 Trainable params: 1,341,469 Non-trainable params: 2,257,	984		



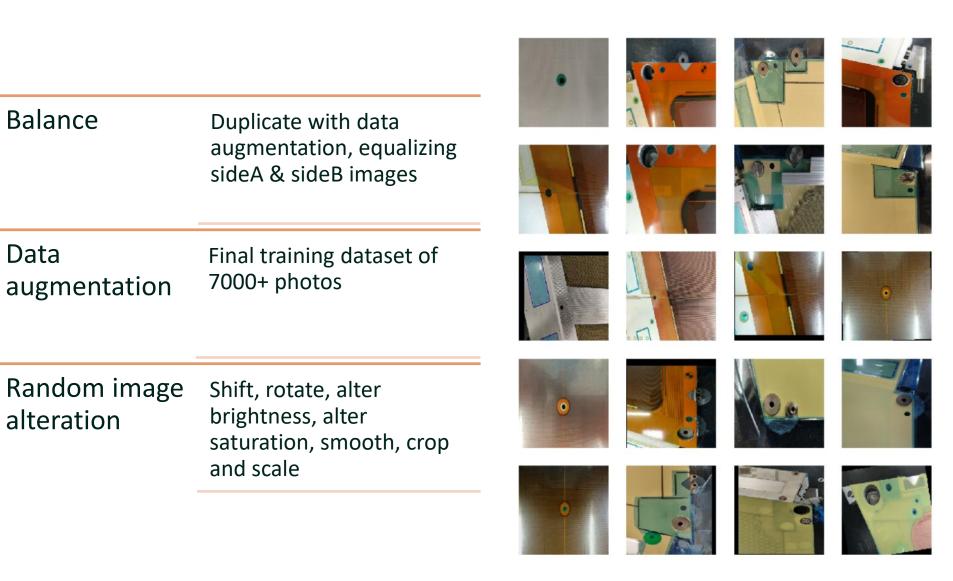
MAGE	COL	LECT	ION


Session: definition	The set of 6 photos taken at a particular step of prod/QC
60 prod/QC steps observed	Collected Jan '20 to Mar '20, a total of 750 photos
118 resulting sessions	Half taken with smartphone, half with clean room camera
Intrinsic unbalance	Natural sideA/sideB unbalance
Programmatic unbalance	Missing DriftF and DriftC





13



14

DATA AUGMENTATION

TRAINING (1/2): CUSTOM MULTI-CLASS LOSS FUNCTION

Usually, binary cross entropy: negative log likelihood -log(p) of an observation being of a specific class with the model predicting a probability p for that class. *Does not work for correlated multi-class*

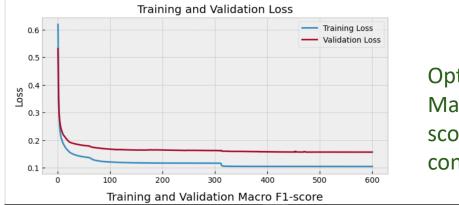
Use F1-score (harmonic mean of Precision and Recall) instead, F1 = 2.TP / (2.TP + FN + FP)

		True co	ndition			
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	<u>Σ</u> True posit	<mark>uracy</mark> (ACC) = ive + Σ True negative tal population
Predicted	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	ΣF	covery rate (FDR) = alse positive d condition positive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) =Σ False negativeΣ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{\text{TPR}}{\text{FPR}}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = <u>FNR</u> TNR	$(DOR) = \frac{LR+}{LR-}$	2 · <u>Precision · Recall</u> Precision + Recall

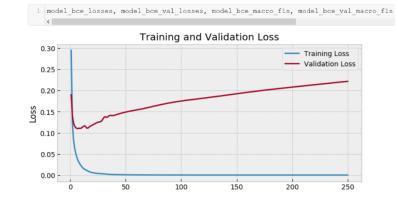
To maximise F1-Score, minimize 1 – F1-score

F1-Score is not differentiable (discrete), use soft-F1 instead (continuous probabilities)

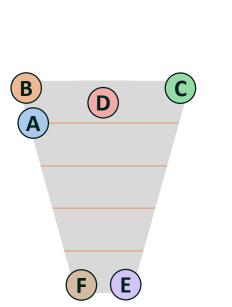
Average soft-F1 accross all category labels -> macro-soft-F1

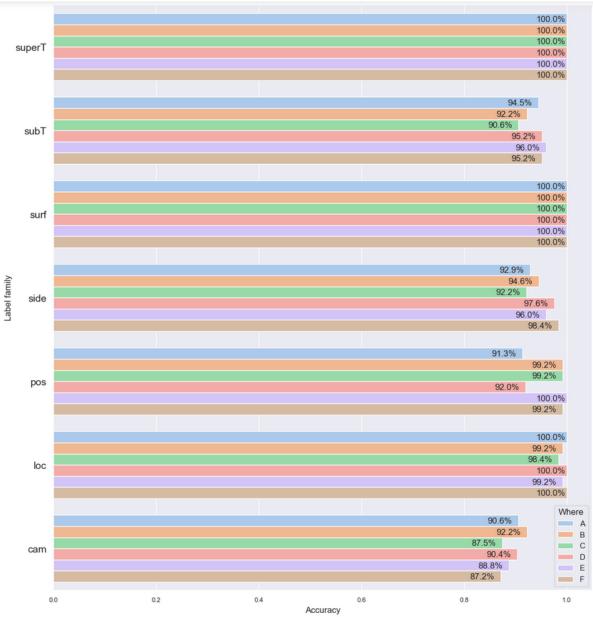


Initial training took 0h:57m:19s

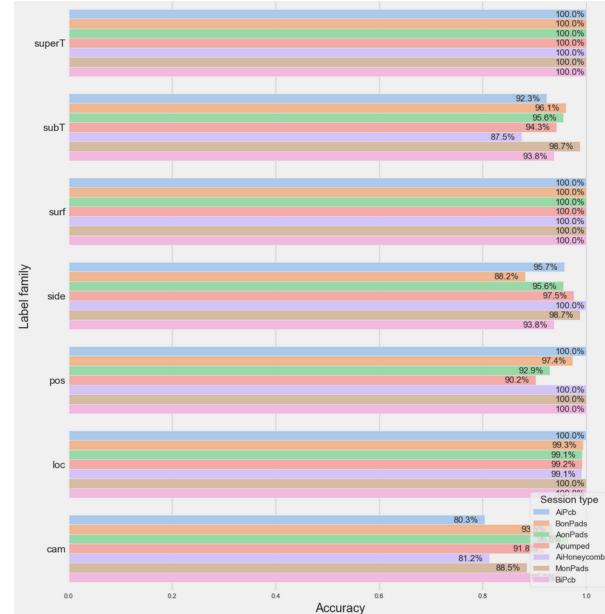

alize the learning curves on the training and validation sets when using the macro soft-F1 loss. function that plots learning curves was implemented and imported from utils module.

Optimizing for Macro-F1 score converges ...


 $\land \downarrow$


... where binary cross entropy loss fails

ANALYSIS: PER-IMAGE ACCURACY, FOR EACH LOCATION


22

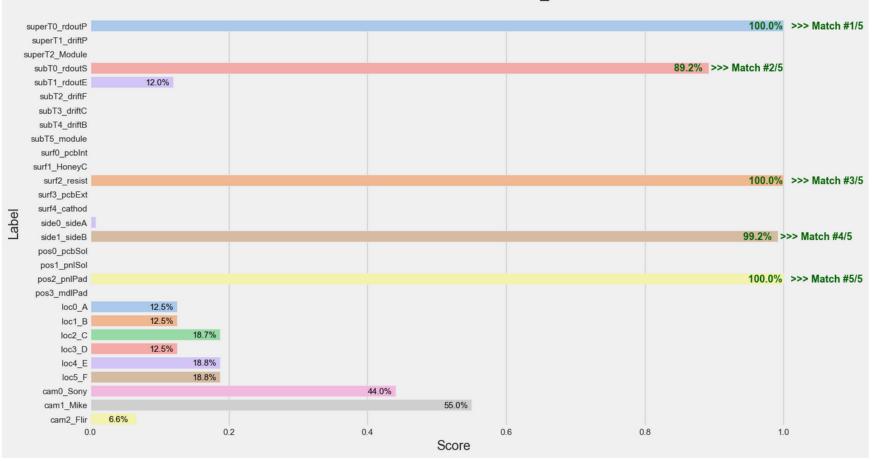
FROM RESEARCH TO INDUSTRY

ANALYSIS: PER-IMAGE ACCURACY, FOR EACH SESSION TYPE

AiPcb

BonPads

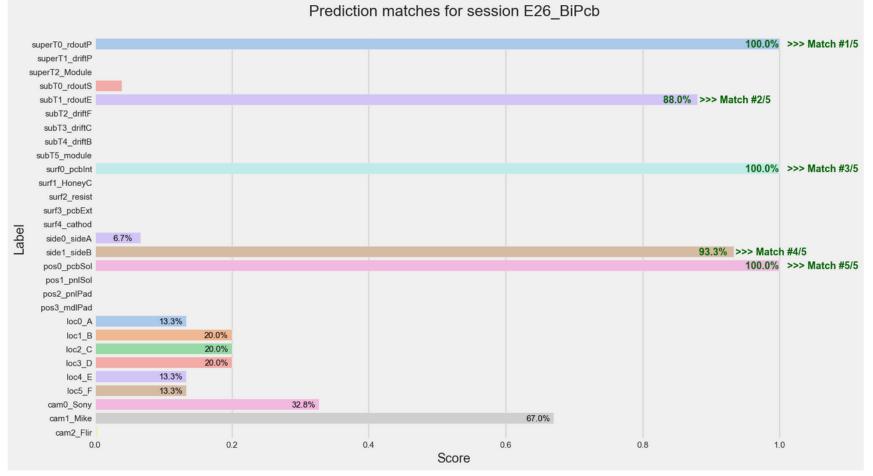
AonPads


Apumped

AiHoneycomb

MonPads

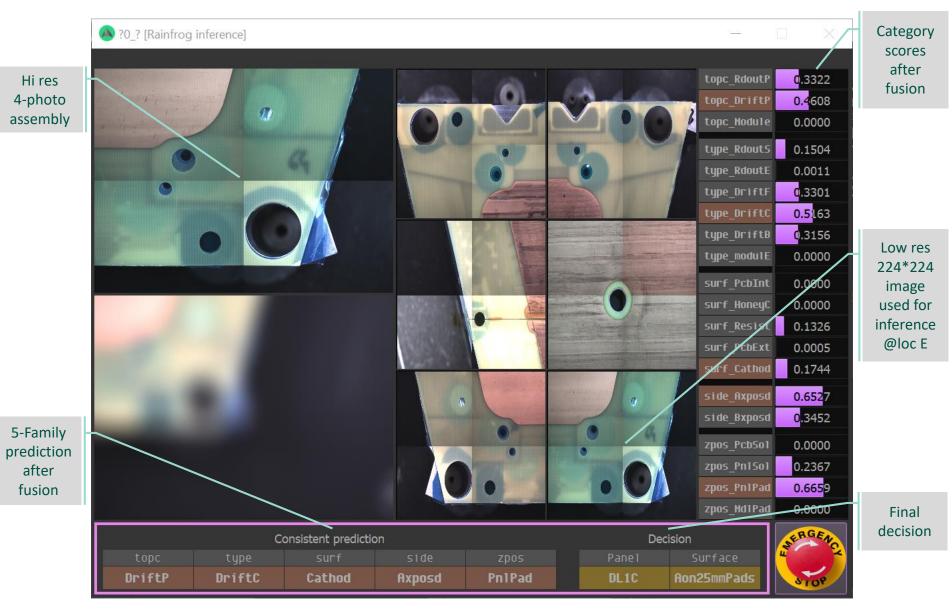
BiPcb



Prediction matches for session S23 BonPads

Fusion Analysis: Session scores (2/2)

|!!!!!!!!!!!!!! Bingo, all 60 sessions have matched for all prediction families...


Fine, but will it generalize correctly?

cea	NTEGRATION					
Save fro	ozen model	Export trained model with frozen graph and constant weights				
		<pre>Convert the model to a TFLite model, direct converter = tf.lite.TFLiteConverter.from_saved_model(newestSoftF1dir) tflite_model = converter.convert() open("reloadedF1.tflite", "wb").write(tflite_model)</pre>				
Install		C++ Library, for inference only				
tensorf	lowLite	<pre>// Load model, build ther interpreter, allocate tensor buffers model_ = tflite::FlatBufferModel::BuildFromFile("/NswFiles/Rainfrog/Model/reloadedF1.tflite"); InterpreterBuilder builder(model(), resolver); builder(&interpreter); TFLITE_MINIMAL_CHECK(interpreter->AllocateTensors() == kTfLite0k);</pre>				
Run info	erence	<pre>// Feed network, run inference and save ouputs // Image data must first be formatted to fit network input (rgb order, float) uint8_t* imgPixelPtr = inputImage.ptr<uint8_t>(0); float* feedIn = interpreter->typed_tensor<float>(input); prepareTfliteFloatInput(imgPixelPtr, feedIn); TFLITE_MINIMAL_CHECK(interpreter->Invoke() == kTfLiteOk); for (int i = 0; i < labelNames.size(); ++i) imageScore[i] = interpreter->typed_output_tensor<float>(0)[i];</float></float></uint8_t></pre>				
Integrat existing		Images taken by Flir camera on gantry head, requires 4-photo stitching				
control prograr	n	Unchanged GUI, Rainfrog is launched when user selects «? » scan command				

FIELD TEST (1/4): 1ST «CORRECT» INFERENCE: B32_AONPADS (LOUISE)

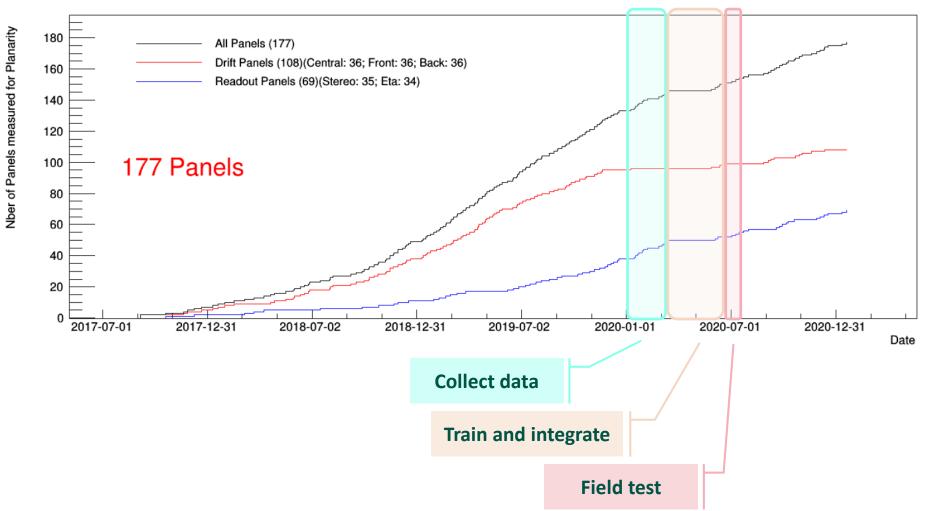
FIELD TEST (2/4): 2^D CORRECT INFERENCE, M22_MONPADS (THELMA)

?0_? [Rainfrog inference]					
				<pre>topc_RdoutP topc_DriftP topc_Module tupe_RdoutS tupe_RdoutS tupe_DriftC tupe_DriftC tupe_DriftC surf_PcbInt surf_Resist surf_Resist surf_Cathod side_Axposd tupe_RdoutS t</pre>	0.0058 0.1647 0.8128 0.1355 0.1078 0.2230 0.2230 0.2809 0.2809 0.2809 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1632 0.1632 0.1632
Co topc type Module modulE	the state of the second	ide zpos posd Md1Pad	244 S	iurface (ternal	STOP

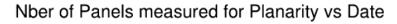
FIELD TEST (3/4): WRONG PREDICTION, E28_BONPADS (THELMA) Cea

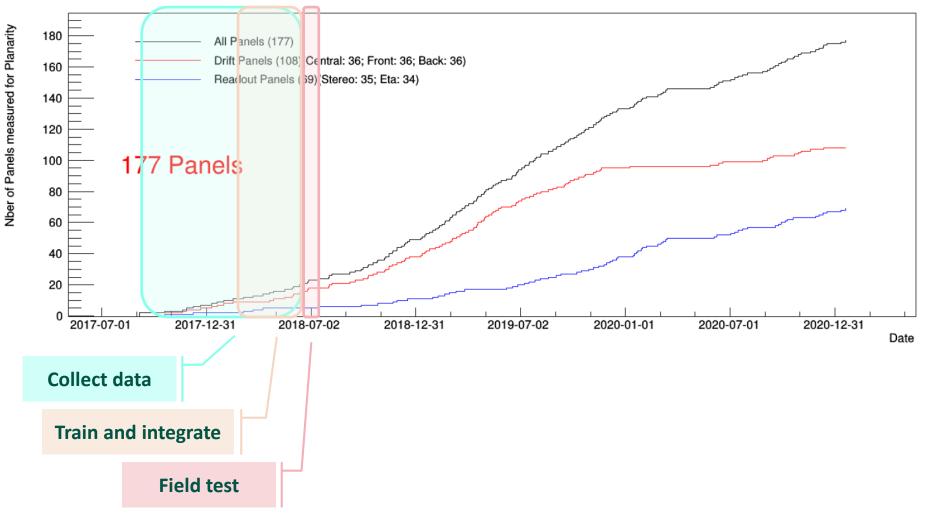
🚯 ?0_? [Rainfrog	inference]					- [
						topc_RdoutP topc_DriftP topc_Module type_RdoutS type_RdoutE type_DriftF	1.0000 0.0000 0.0000 0.5001 0.4823 0.3866
	• (0	type_DriftC type_DriftB type_modulE surf_PcbInt surf_HoneyC surf_Resist	0.2010 0.0000 0.0000 0.0003 0.0000 0.8275
						surf_PcbExt surf_Cathod side_Axposd side_Bxposd zpos_PcbSol	0.0000 0.0000 0.3317 0.6670 0.0009
				2.	. 0	zpos_Pn1So1 zpos_Pn1Pad zpos_Md1Pad	0.0045 <mark>0.625</mark> 8 0.0000
topc RdoutP	C type RdoutS	onsistent prediction surf Resist	n side Bxposd	zpos Pn1Pad		Surface 25mmPads	STOP

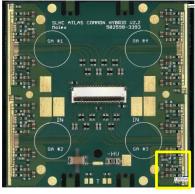
FIELD TEST (4/4): CORRECT PREDICTION, E29_BIPCB (THELMA)

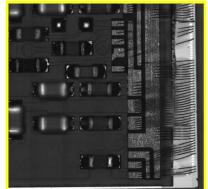

\land ?0_? [Rainfrog	inference]					· [
						topc_RdoutP	1.0000
					topc_DriftP	0.0000	
					topc_Module	0.0000	
						type_RdoutS	<mark>0.</mark> 3880
				type_RdoutE	0.660 <mark>3</mark>		
				type_DriftF	0.2217		
					type_DriftC	0.2238	
		A ANT			type_DriftB	0.0000	
		21			type_modulE	0.0000	
						surf_PcbInt	0.9990
				0	surf_HoneyC	0.0000	
					surf_Resist	0.0000	
					surf_PcbExt	0.0000	
			-		surf_Cathod	0.0000	
					side_Axposd	0.2078	
						side Bxposd	0.7719
			20			zpos PcbSo1	0.9991
							0.0000
					zpos_Pn1So1 zpos_Pn1Pad	0.0000	
						zpos_Md1Pad	
							0.0000
Consistent prediction						Decision	
topc	type	surf	s i de	zpos	the second second	Surface	"
RdoutP	RdoutE	PcbInt	Bxposd	PcbSo1	RL1E	BiPcb	STOP

Accuracy found to be ~90% or more for individual patch images on initial dataset				
After patch fusion, achieved 100% on initial dataset				
Run-time camera field of view was different from the fov of initial training images				
Automatic vertical sensing by contrast analysis was difficult to tune for all surface types				
Better NN architecture : MobileNetV3?				
Add fine tuning phase to training				
Such applications need to be carefully scheduled ahead of production				
In July '20, 147 panels had been measured so far / 177 total (32 + some spare modules built)				


-Infan

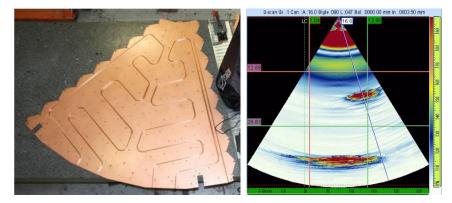

Nber of Panels measured for Planarity vs Date




OTHER ML APPLICATIONS FOR TEST AUTOMATION?

Atlas ITK

Verification of bonding by analysis of patch images



Atlas ITK 4*4 cm² module.

Closeup on bottom right area to show a bonding section.

CMS HGCal

Verification of pipe soldering by ultrasound image analysis

CMS HGCal copper plates with cooling pipes. Illustration of ultrasound imaging of soldering sections.

Both address the challenging issue of anomaly detection in an early phase

Thanks ...