

Extended sources reconstructions by means of Coded mask aperture systems and Deep learning algorithm

Geoffrey DANIEL, CEA/DES/ISAS/DM2S/STMF/LGLS Olivier LIMOUSIN, CEA/DRF/Irfu/DAp

16th March 2021

GEOFFREY DANIEL - CEA/DES

CALISTE DETECTOR

CdTe semi-conductor crystal

Miniature pixelated spectro-imager

Works at **nearly room temperature**: high performance at -15°C Low power consumption: 200 mW

First developments for **astrophysical** application

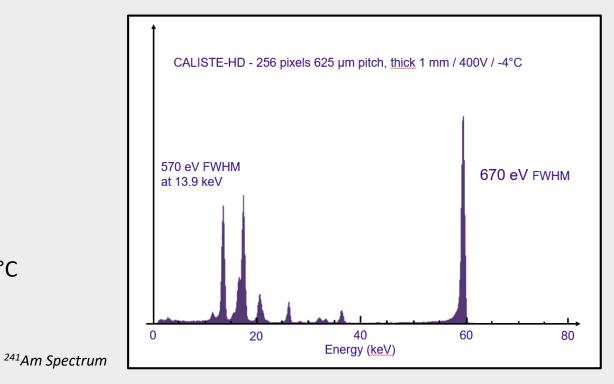
 \rightarrow STIX: Spectrometer Telescope Imaging X-rays Observation of Bremstrahlung from accelerated electrons near the Sun

Different versions of Caliste: Caliste-SO, Caliste-HD, Caliste-O...

From space applications to **industrial** applications:

- \rightarrow Medical application: breast tumor cells detection
- \rightarrow Nuclear safety application

16th March 2021



Caliste Family

GEOFFREY DANIEL - CEA/DES

CALISTE HD

Pixelated detector 16 x 16 pixels 625 μm pixel pitch 1 mm thickness Surface: 1 cm² Other versions available

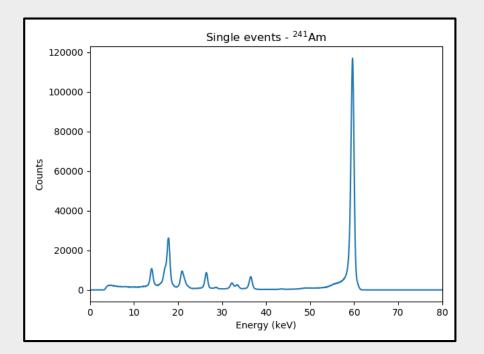
High energy range: from 2 keV to 1 MeV

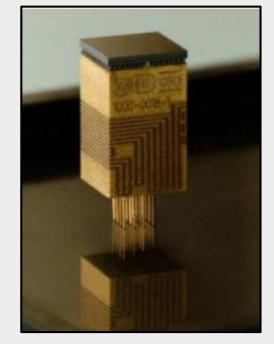
High energy resolution

670 eV FWHM at 60 keV (1,1 %) 4,1 keV FWHM at 662 keV (0,62 %)

Spectroscopy: Radioactive sources identification

Imaging: Compton localisation Coded Mask Aperture Imaging

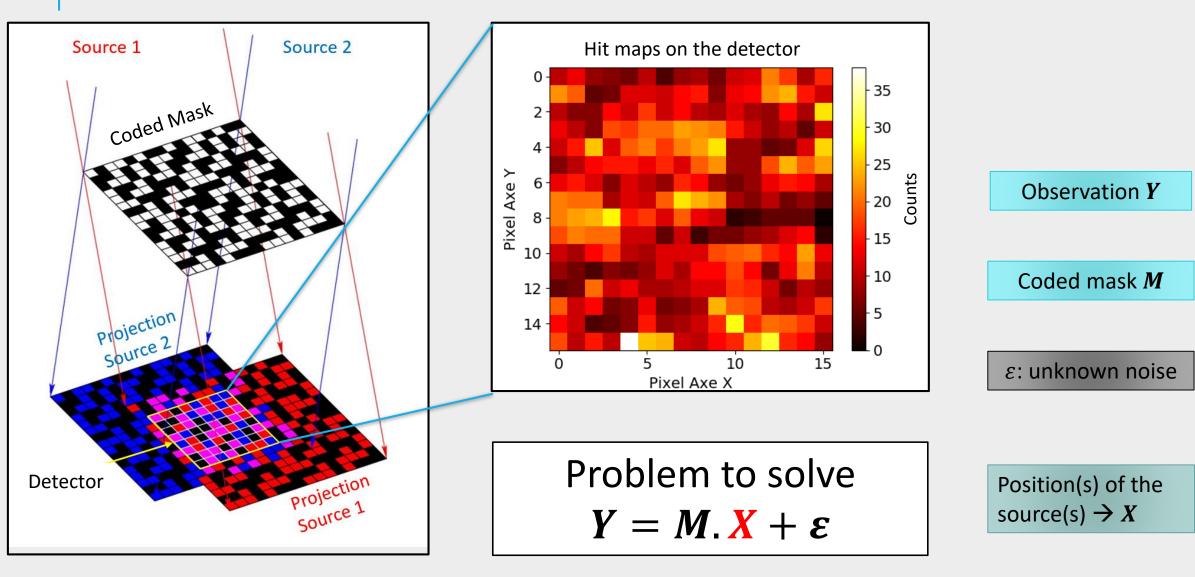




Caliste-HD (CEA Irfu)

WIX-HD Camera Mass: 1 kg

CODED MASK APERTURE IMAGING

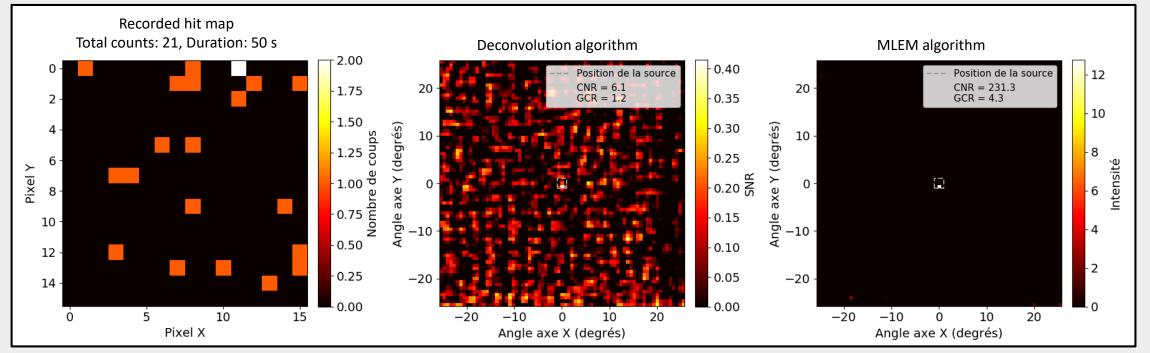


CLASSICAL ALGORITHMS

Two main algorithms:

- Deconvolution algorithm \rightarrow Correlations between the mask and the recorded hit map
- MLEM (Maximum Likelihood Expectation Maximization) \rightarrow Iterative algorithm, maximization of the likelihood p(Y|X) to observe the data Y, given the position of the sources X

Tests on real data

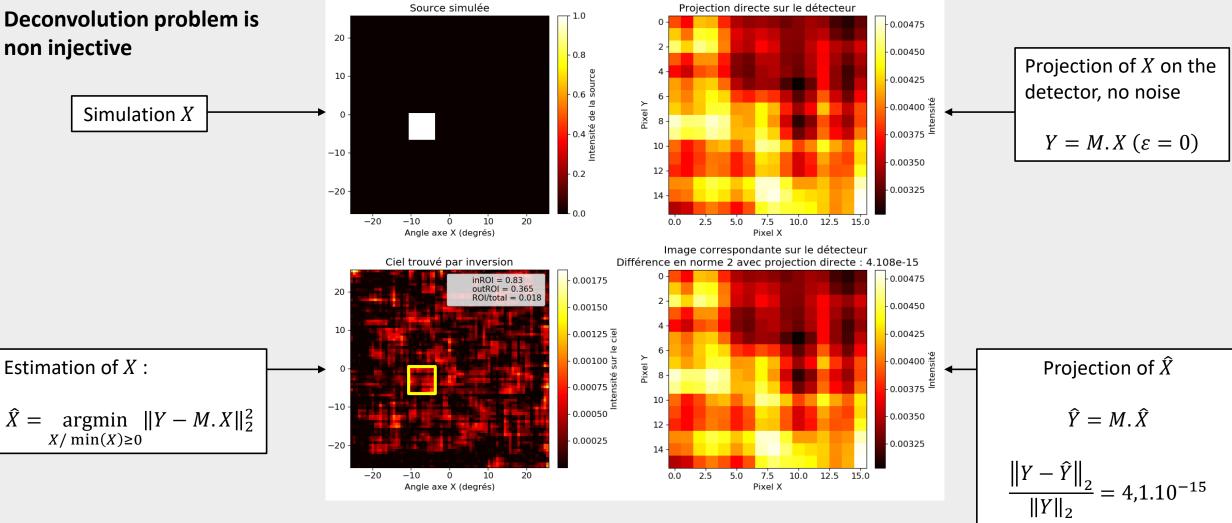


16th March 2021

GEOFFREY DANIEL - CEA/DES

EXTENDED SOURCES

Deconvolution problem is non injective



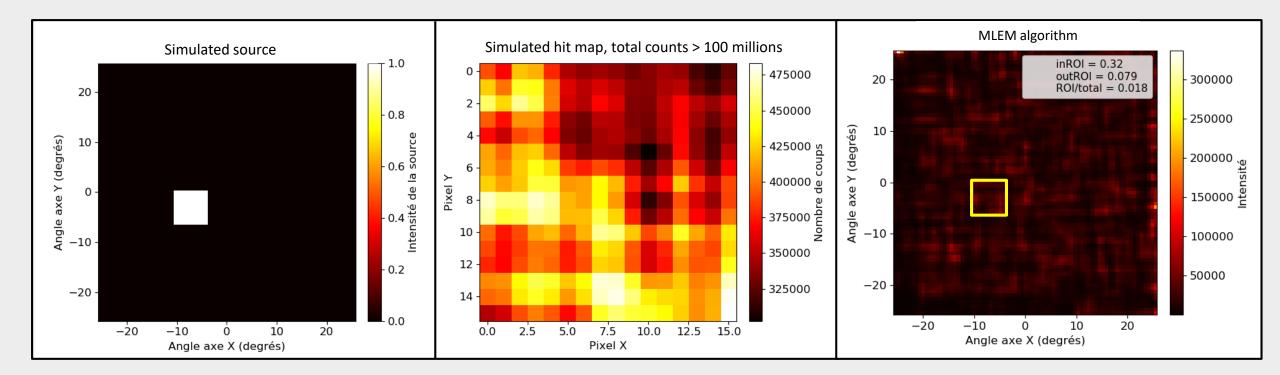
EXTENDED SOURCES

Limitations on extended sources

Classical algorithms are unable to reconstruct extended sources

Even in the case of high counting statistics and without any noise

Need for regularization or other algorithms



GEOFFREY DANIEL - CEA/DES

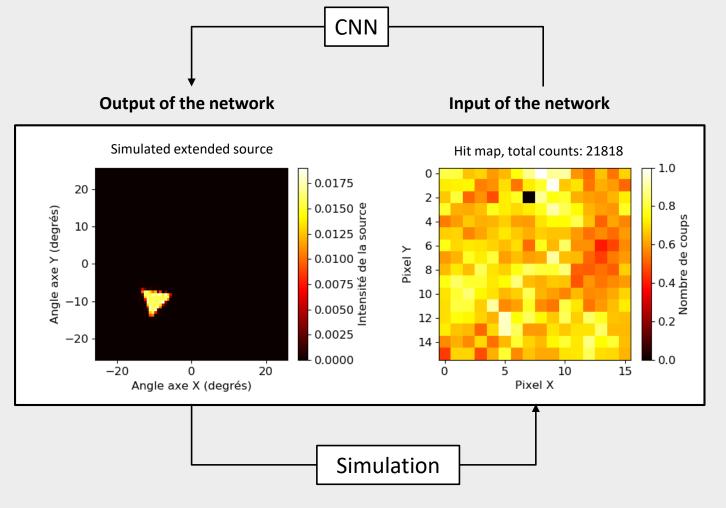
DEEP LEARNING APPROACH

Deep Learning

New for this topic: two studies in 2019 and 2020 on simulated point sources

Online learning

- From simulations
- Creation of 1000 examples and learning for one epoch (iteratively)
 - 900 training examples
 - 100 validation examples
- Learning more that 200 million examples

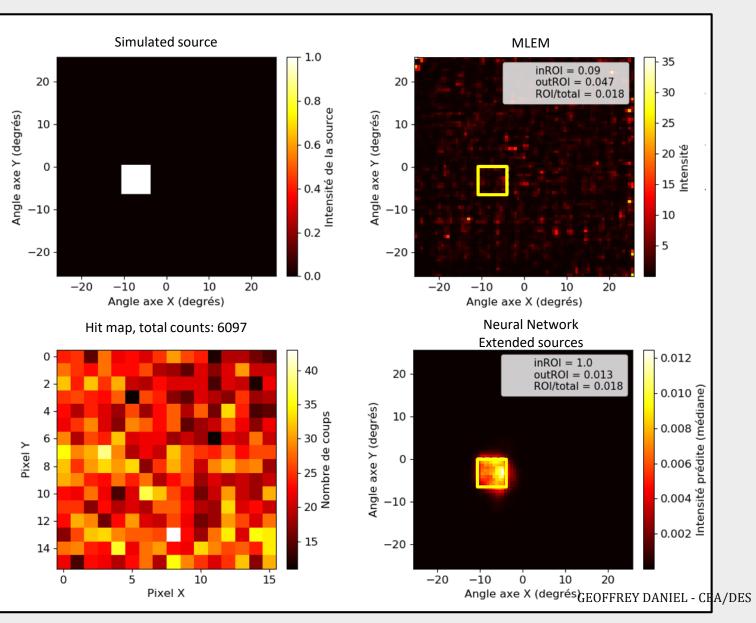


DEEP LEARNING RESULTS: TESTS ON SIMULATION

Computation time: MLEM: 3,5 s (100 iterations) CNN: 0,035 s

Extended sources

Simulation



DEEP LEARNING RESULTS

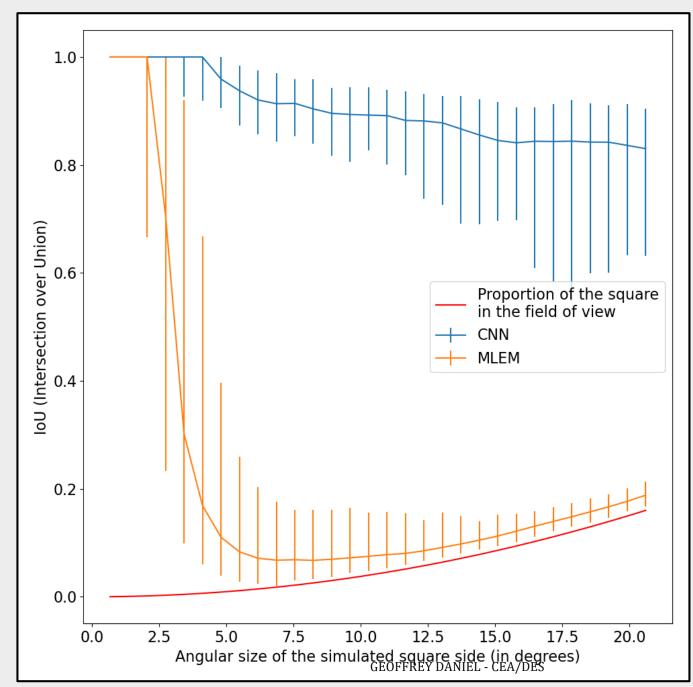
Performances on extended sources reconstruction

Simulations of square sources, different sizes

- 10 millions of photons
- No noise
- No disabled pixels
- 1000 examples for each size

Metric: Intersection over Union (IoU)

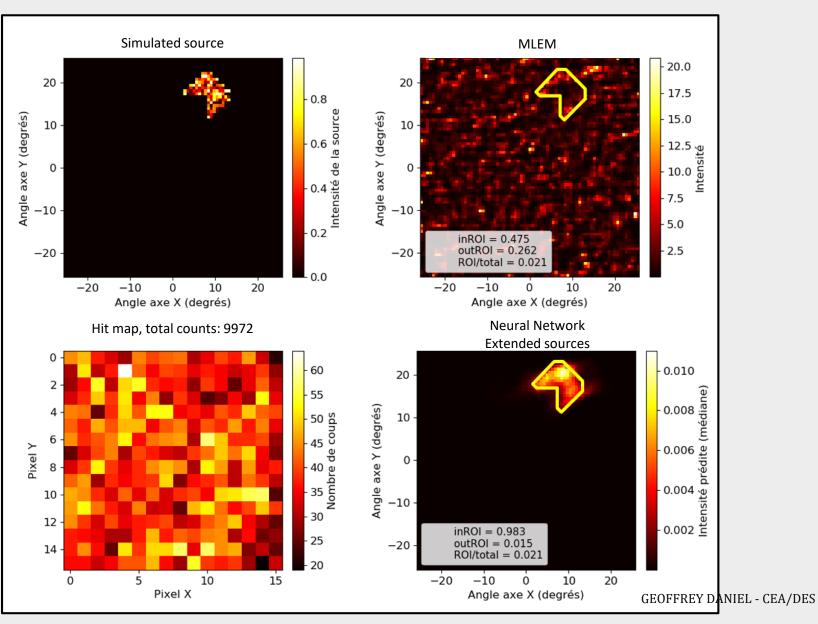
$$IoU = \frac{Area(True \cap Recons)}{Area(True \cup Recons)}$$



16th March 2021

DEEP LEARNING RESULTS: TEST ON OTHER SHAPE

Extended sources Simulation

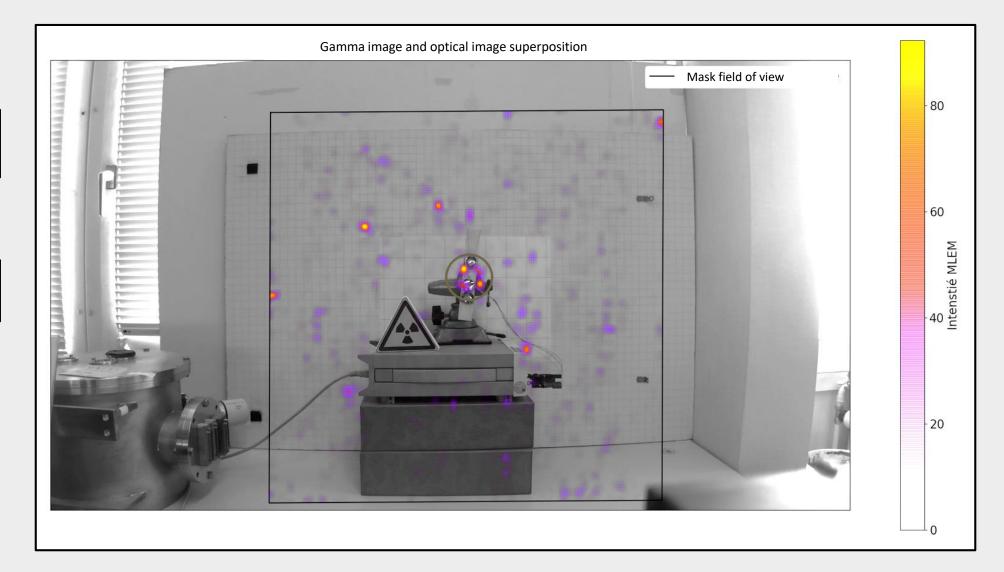


16th March 2021

DEEP LEARNING RESULTS: REAL DATA

Extended source Real Data

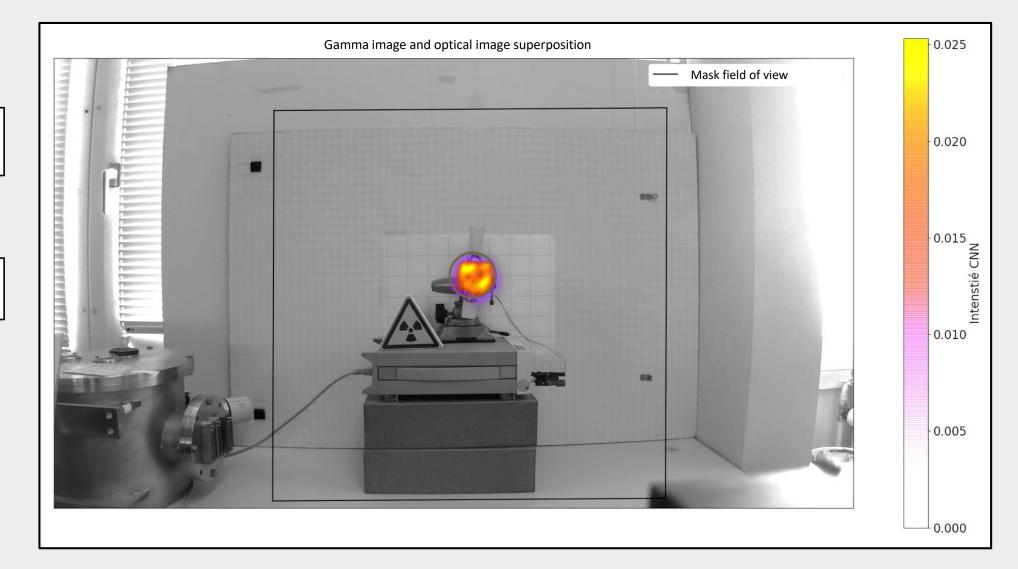
MLEM algorithm Acquisition: 2 h 35 mn



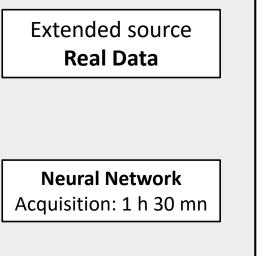
DEEP LEARNING RESULTS: REAL DATA

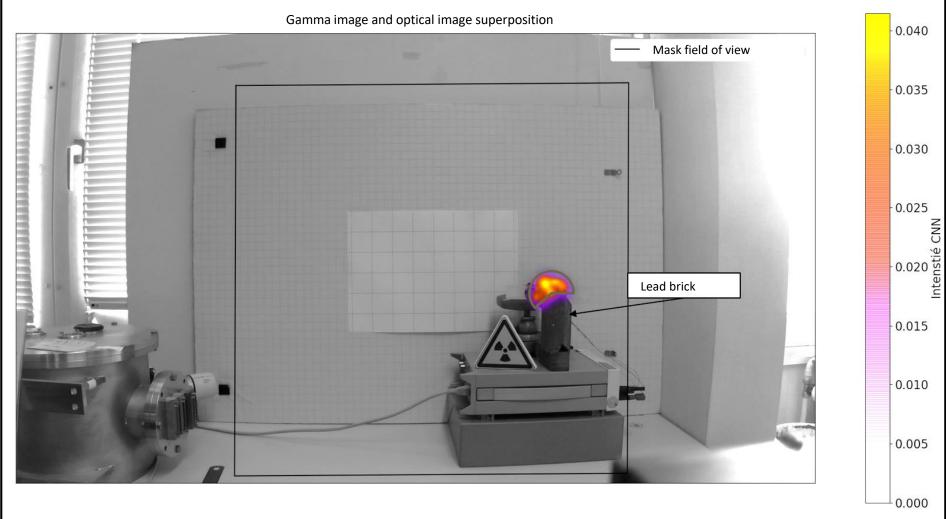
Extended source Real Data

Neural Network Acquisition: 2 h 35 mn



DEEP LEARNING RESULTS: REAL DATA





Neural Networks: Solution for the problem of **extended** sources reconstructions

 \rightarrow Regularization through the data and the learning method

Interesting improvements of the **computation time** with Neural Network

Outlooks

- One neural network to process extended and point sources data
- Tests in operational conditions
- Applications in other fields: instrumentation for astrophysics, medical imaging...

Thank you for your attention!