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‣ Particle collisions create particles with non-zero color charge (i.e. quarks & gluons)


‣ Free quarks/gluons hadronize to produce hadrons (e.g. mesons and baryons)


‣ “Jets” are collimated sprays of many hadrons in a cone.


‣ Identifying jets and different kinds of jets help distinguish high-energy processes.

2Hadrons & Jets

https://cms.cern/tags/particle-jet



‣ Jets are isolated in the detector using clustering algorithms


‣ How do we distinguish different types of jets from one another?

3Machine Learning Jet Substructure

https://github.com/scikit-hep/pyjet



‣ Quark/Gluon discrimination?


‣ Gluons produce more particles. 


‣ Look at “jet multiplicity” and similar proxies/weightings of momentum/
angular separation


‣ From “generalized angularity”: multiplicity, LHA, pTD…


‣ What about Jets with multiple sub-jets?


‣ W/Z/h decay to 2 jets


‣ We invent “N-subjettiness” to quantify separable jet substructure

4Jet Substructure (JSS)

λκ
β = ∑

i∈jet

zκ
i θβ

i

What variables would be useful for training ML to classify 
different jets?

τN =
1
d0 ∑

k

pT,kmin {ΔR0,k, ΔR1,k…ΔRN,k}



‣ Do we need to hand-pick observables in 
every study?


‣ What if we let a Deep Neural Network 
learn to solve the problem?


‣ Can a CNN to learn to classify directly 
from the calorimeter data?

5What’s the alternative?

- ET = Transverse Energy

- Position (η, φ)

- η = -ln(tan(θ/2)) 

η

ɸ



6Test Case: Boosted W vs QCD

Boosted W bosons (W → qq’) create highly collimated di-jets.  


Can a CNN separate boosted W jets from QCD jets?

Single Jet

pp → qq
pp → qg
pp → gg pp → W+W− → qqqq

Increasing momentum

2 jets

j1

j2

j1

j2

one jet?

two jets?



7QCD mono-jet vs Boosted W di-jet
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

1 Event Average of all events

 QCD Jet (q, g)  W jet 

1 Event Average of all events



8High-Level (HL) vs Low-Level (LL)
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

3

Trimmed Mass (GeV)
0 20 40 60 80 100 120 140 160 180 200

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.02

0.04

0.06 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β
21τ

0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=2β

2C
0 0.05 0.1 0.15 0.2

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.02

0.04

0.06
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β

2C
0 0.1 0.2 0.3 0.4 0.5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=2β
2D

0 1 2 3 4 5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β
2D

0 1 2 3 4 5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

Baldi, P., Bauer, K., Eng, C., Sadowski, P., & 
Whiteson, D. (2016, March 30). Jet Substructure 
Classification in High-Energy Physics with Deep 

Neural Networks. arXiv.org. http://doi.org/
10.1103/PhysRevD.93.094034

‣ CNN performs better than Jet Substructure


‣ LL network (red line): AUC = 95.30% ± 0.02%


‣ HL network (blue line): AUC = 95.00% ± 0.02%


‣ But wait!


‣ Where is that extra information coming from? 


‣ Why don’t Jet Substructure observables 
contain this information? 


‣ We’ve used a black box, so how can we 
investigate?  



‣ We weren’t the only ones thinking about a 
generalized approach to understanding JSS!


Jesse Thaler, Patrick Komiske, Eric Metodiev


https://arxiv.org/abs/1712.07124


‣ Energy Flow Polynomials (EFP): A complete 
linear basis set for jet substructure.

10Another approach to generalizing JSS

a b

a b

=
N

∑
a

za

= θab

= (θab)2

Existing JSS exists in the EFP space

For the hadronic measure in Eq. (2.4) with � = 1, there is an approximate equivalence

with the squared jet mass divided by the jet (scalar) transverse momentum:

Hadronic :
m2

J

p2TJ

=
MX

i1=1

MX

i2=1

zi1zi2(cosh(�yi1i2) � cos(��i1i2)) =
1

2
⇥ + · · · . (2.7)

Since the jet mass is not exactly rotationally symmetric in the rapidity-azimuth plane, the

subleading terms in Eq. (2.7) are not fully encompassed by the simplified set of hadronic

observables depending only on {�y2ij + ��2
ij}, but could be fully encompassed by using an

expansion in {�yij , ��ij} as in Eq. (2.5). For narrow jets, these higher-order terms in the

expansion become less relevant since �yij , ��ij ⌧ 1.3

2.3.2 Energy correlation functions

The ECFs are designed to be sensitive to N -prong jet substructure [51]. They can be written

as a C-correlator, Eq. (1.3), with a particular choice of angular weighting function:

f (�)
N ({✓ij}) =

Y

i<j

✓�ij , (2.8)

where ✓ij = (�y2ij + ��2
ij)

1/2. In terms of multigraphs, the ECFs correspond to complete

graphs on N vertices:

e(�)2 = , e(�)3 = , e(�)4 = , (2.9)

which are EFPs using the measure in Eq. (2.4) with exponent �.

The ECFs have since been expanded to a more flexible set of observables referred to as

the ECFGs [52]. Letting min(m) indicate the m-th smallest element in a set, the ECFGs are

also C-correlators with angular weighting function:

vf
(�)
N ({✓ij}) =

vY

m=1

(m)
min
i<j

{✓�ij}. (2.10)

The ECFGs do not have an exact multigraph correspondence due to the presence of the min

function, but are evidently closely related to the EFPs since they share a common energy

structure. The min function itself can be approximated by polynomials in its arguments,

3
Alternatively, we could use a measure with ✓ij =

⇣
2 pµi pjµ
pT,ipT,j

⌘�/2

, similar in spirit to the Conical Geometric

measure of Ref. [99], to exactly recover the jet mass.
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Energy Correlation

We can also explore more exotic observables. 

2 Energy flow polynomials

IRC-safe observables have long been of theoretical and experimental interest because ob-

servables which lack IRC safety are not well defined [78–81], or require additional care to

calculate [82–86], in perturbative quantum chromodynamics (pQCD). More broadly, though,

IRC safety is a simple and natural organizing principle for high-energy physics observables,

since IRC-safe observables probe the high-energy structure of an event while being insensitive

to low-energy and collinear modifications. IRC safety is also an important property experi-

mentally as IRC-safe observables are more robust to noise and finite detector granularity.

As argued in Refs. [74, 87–89], the C-correlators in Eq. (1.3) are a generic way to capture

the IRC-safe structure of a jet, as long as one chooses an appropriate angular weighting

function fN . Later in Sec. 3, we give an alternative proof that C-correlators span the space

of IRC-safe observables and go on to give a systematic expansion for fN . This expansion

results in the EFPs, which yield an (over)complete linear basis for IRC-safe observables. In

this section, we highlight the basic features of the EFPs and their relationship to previous jet

substructure observables.

2.1 The energy flow basis

One can think of the EFPs as C-correlators that make specific, discrete choices for the angular

weighting function fN in Eq. (1.3). True to their name, EFPs have angular weighting functions

that are polynomial in pairwise angular distances ✓ij . The energy flow basis is therefore all

C-correlators with angular structures that are unique monomials in ✓ij , meaning monomials

that give algebraically di↵erent expressions once the sums in Eq. (1.3) are performed. Since

we intend to apply the energy flow basis for jet substructure, we remove the dependence

on the overall jet kinematics by normalizing the particle energies by the total jet energy,

EJ ⌘
PM

i=1 Ei, leading to the EFPs written in terms of the energy fractions zi ⌘ Ei/EJ as

in Eq. (1.1).

The uniqueness requirement on angular monomials can be better understood by devel-

oping a correspondence between monomials in ✓ij and multigraphs:

Multigraph/EFP Correspondence. The set of loopless multigraphs on N vertices corre-

sponds exactly to the set of angular monomials in {✓iki`}k<`2{1,··· ,N}. Each edge (k, `) in a

multigraph is in one-to-one correspondence with a term ✓iki` in an angular monomial; each

vertex j in the multigraph corresponds to a factor of zij and summation over ij in the EFP:

j
()

MX

ij=1

zij , k ` () ✓iki` . (2.1)

Using Eq. (2.1), the EFPs can be directly encoded by their corresponding multigraphs.

For instance:

=
MX

i1=1

MX

i2=1

MX

i3=1

MX

i4=1

zi1zi2zi3zi4✓i1i2✓i2i3✓
2
i2i4✓i3i4 . (2.2)
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Graph Components

With variables and parameters (κ,β)

zκ
i = (

pT,i

∑i pTj
)

κ

θβ
ij = (Δη2

ij + Δϕ2
ij)

β/2

https://arxiv.org/abs/1712.07124


1. Black-box Learning


‣ Benefits: Powerful Performance and no need to hand-pick observables


‣ Drawbacks: Not interpretable. What are we learning about the problem?


2. Energy Flow Polynomials (EFP)


‣ Benefits: 


‣ Physics motivated


‣ Modeling can be verified


‣ Uncertainties can be defined


‣ Compact and efficient


‣ Drawbacks: It’s an infinite space. How do we begin to choose observables and their parameters?

11Marry the two methods

Combine them! The DNN has learned how to solve the problem. Let 
the DNN tell us what EFPs to choose!



‣ Consider boosted W vs QCD jet binary classification


‣ CNN has learned where to draw an ideal decision surface in its feature 
space. 


‣ We want a HL feature space that makes equally good decisions.


‣ How do we compare the decision surface for the CNN to the HL 
features?

12Decision Ordering: A New Metric for Decision Similarity



13Decision Ordering
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Dissimilar OrderingsComparing pair orderings

DO(x, x′￼) = Θ [( f(x) − f(x′￼)) ⋅ (g(x) − g(x′￼))]

- Take a pair of signal (x) and background (x’) 
features, 


- Predictions for 2 NN (f(x) and g(x)) of the 
features will increase/decrease relative to input

Heaviside step function (Θ) sets DO=1 for 
similar order, DO=0 for dissimilar order.


Average many examples = Average Decision 
Ordering

ADO′￼= ∑ DO(x, x′￼)
ADO = 1 : Identical decisions


ADO = 0.5 : Random similarity



14Guided Search

Use ADO to choose EFP that makes similar choices to the LL network in the “differently ordered” red space

If NOT —> Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

CNN

Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

Red Space: LL and HL network disagree on 
ordering

CNN

Why is ADO useful? 


We can compare NN decision making. Where does the HL network and LL network disagree? 



15Finding a new EFP with Guided Search

We only need 1 new 
observable to achieve equal 
performance with the CNN! =

N

∑
a,b,c,d=1

z2
az2

b z2
c z2

d θabθbcθacθad

(κ=2, β=1/2)
 Which EFP did we pick? 

Noteworthy details


‣ EFP is not Infrared-safe (k ≠ 1)

‣ β=1/2 is probing small-angle behaviour

‣ Chromatic #3 graph (probing deviations 

from 2-prong substructure)

‣ Chromatic Number = Minimum number 

of prongs to not vanish

6

A. Boosted Boson Classification

Massive objects produced at the LHC often have
enough transverse momentum that their decay products
become collimated. For an object with a hadronic decay
mode, such as a W boson decaying to a quark-antiquark
pair (W ! qq̄0), the resulting jet in the detector consists
of two clusters of energy, one from each of the fragment-
ing quarks. The substructure of these jets is distinct from
those that arise from the fragmentations of a single hard
quark or gluon. Identification of jets with nontrivial sub-
structure has become an essential tool for probing the
nature of collisions at the LHC [21, 45–56]

There are many di↵erent ways to represent the infor-
mation in a jet. At the most fundamental level, a jet is
variable-length collection of four-vectors with associated
particle properties, motivating set-based ML tools [69–
74]. Another popular approach is to describe a jet as a
grid of calorimeter cells with energy depositions, giving
rise to a “jet image” [19, 75]. In any of these low-level
representations, the jet data is high dimensional. This
motivates the development of HL observables that intelli-
gently summarize the low-level information to reduce the
e↵ective dimensionality of the task. Physicists have engi-
neered numerous HL observables tasks that incorporate
domain knowledge about jet formation (see Refs. [49, 57–
62, 76–83] for an incomplete list). Typical usage is to
apply cuts on one or more of these HL observables, or to
combine several of them using a shallow ML classifier.

In the context of jet classification, ML tools based on
low-level inputs have outperformed traditional strategies
based on HL observables [84]. Of course, the HL ob-
servables themselves are just function of the low-level in-
puts, so it should be possible to find a large enough set
of physics-motivated HL observables that can match the
performance of these ML classifiers [85–87]. This is in-
deed the intuition behind the guided strategy in Sec. II,
where the goal is to leverage a black-box ML method to
identify the most e↵ective HL observables.

Our case study is based on the same datasets as
Ref. [20]. These datasets correspond to

p
s = 14TeV

proton-proton collision, where hard scattering and res-
onance decay were generated using MadGraph 5
v2.2.3 [88], showering and hadronization were generated
with Pythia v6.426 [89], and the response of the de-
tectors was simulated with Delphes v3.2.0 [90]. The
boosted W signal process is diboson production (pp !
W+W�), which yields two fat jets each with 2-prong
substructure. The background process is QCD dijet
production (pp ! qq, qg, gg), which typically yields 1-
prong jets. These samples do not include contamina-
tion from pileup (multiple proton-proton collision per
beam crossing). Jets are clustered using the anti-kt algo-
rithm [91] with radius parameter R = 1.2, using Fast-
Jet 3.1.2 [92]. The dataset contains 5⇥106 events, split
equally between signal and background. Following the
approach in Ref. [20], each jet is pixelated into a 32⇥ 32
grid in the rapidity-azimuth plane, and a jet image is

Observable AUC ADO[CNN,Obs.]

Mjet 0.898± 0.004 0.807
C

�=1
2 0.660± 0.006 0.584

C
�=2
2 0.604± 0.007 0.548

D
�=1
2 0.790± 0.005 0.743

D
�=2
2 0.807± 0.005 0.762

⌧
�=1
2 0.662± 0.006 0.600
6HL 0.9504± 0.0002 0.971
CNN 0.9531± 0.0002 1.000
7HLblack-box 0.9528± 0.0003 0.971

TABLE I. Classification performance of the six HL observ-
ables studied in Ref. [20], as well as a 6HL joint classifier.
The six HL observables face a small but significant perfor-
mance gap compared to the benchmark CNN. As discussed
later in Sec. IVA, this performance gap is bridged by a sev-
enth feature discovered using our black-box guided strategy.
The uncertainty on the AUC is computed from 1 standard
deviation of 10-fold cross-validation. The decision similarity
(ADO) to the benchmark CNN is also shown. Details of the
NN architectures are provided in App. A.

formed from the transverse momentum (pT) deposits in
each cell. The jet image is then trimmed [93], where
subjets of radius Rsub = 0.2 are discarded if their pT is
less than 3% of the original jet. The final jet selection
takes jets with trimmed momentum ptrim

T
2 [300, 400]

GeV within the rapidity range |⌘| < 5.0. While impor-
tant jet information is lost by pixelation and trimming,
we include these steps in our analysis in order to perform
an apples-to-apples comparison to Ref. [20].
The trimmed jet’s constituents are used to compute six

HL jet substructure observables: the trimmed jet mass
(Mjet), four ratios of energy correlation functions (C�=1

2
,

C�=2

2
, D�=1

2
, D�=2

2
) [60, 62], and theN -subjettiness ratio

(⌧�=1

21
) [58, 59]. These observables are well-established in

the context of boosted W classification, including studies
at ATLAS [94, 95] and CMS [96]. The W boson classi-
fication performance of these six HL observables is sum-
marized in Table I. The trimmed jet mass is the most
powerful single observable, since the 80.4 GeV mass peak
is a characteristic feature of boosted W bosons.
We can use the ADO from Eq. (3) to gain additional in-

sight into these six HL observables. In Fig. 2, we assess
the pairwise ADO between each of the HL observables
considered. The observable pairs that make the most
similar decisions (i.e. ADO ! 1) are C�=1

2
with C�=2

2

and D�=1

2
with D�=2

2
. This is expected since these ob-

servables have relatively similar structures except for the
choice of � coe�cient, which controls the weighting of an-
gular information within the jets. These pairs also have
similar AUC values, as seen in Table I, since pairs that
make common classification decisions should exhibit sim-
ilar classification power. Comparing the AUC and ADO
values provides a more detailed picture about the degree
of correlation in classification.
The observable pairs that make the least similar deci-

Original HL + 1 EFP

Original HL



Deep networks can identify gaps where low-level data contains unused 
information


ML Mapping strategies can capture and translate that information into 
understandable physics

16Conclusion



Questions ?


