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Hadrons & Jets a

» Particle collisions create particles with non-zero color charge (i.e. quarks & gluons)
» Free quarks/gluons hadronize to produce hadrons (e.g. mesons and baryons)
> "Jets” are collimated sprays of many hadrons in a cone.

» |dentifying jets and different kinds of jets help distinguish high-energy processes.

Parton level m K, ...

\ Particle Jet Energy depositions
P In calorimeters

https://cms.cern/tags/particle-jet



Machine Learning Jet Substructure

» Jets are isolated in the detector using clustering algorithms

» How do we distinguish different types of jets from one another?
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https://github.com/scikit-hep/pyjet




Jet Substructure (JSS) 4

What variables would be useful for training ML to classify

different jets?
Ay = Z 750P
> Quark/Gluon discrimination? P e 7
i€jet
» Gluons produce more particles. K
A K
A
» Look at “jet multiplicity” and similar proxies/weightings of momentum/ >4 pP B
angular separation
» From “generalized angularity”: multiplicity, LHA, pTD... width mass
1 —------- ®------- ®-- <e€3
» What about Jets with multiple sub-jets?
» W/Z/h decay to 2 jets 0 _,multiplicit}lf .
» We invent “N-subjettiness” to quantity separable jet substructure 0 1 2
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What's the alternative?

» Do we need to hand-pick observables in

every study?

» What if we let a Deep Neural Network

learn to solve the problem?

» Can a CNN to learn to classity directly

from the calorimeter data?

- Et = Transverse Energy
- Position (n, ¢)
- N = -In(tan(6/2))



Test Case: Boosted W vs QCD

Boosted W bosons (W — gq’) create highly collimated di-jets.
Can a CNN separate boosted W jets from QCD jets?

Single Jet 2 jets one jet?

\ J . two jets?
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QCD mono-jet vs Boosted W di-jet

QCD Jet(q, 9)
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High-Level (HL) vs Low-Level (LL)

6 HL Variables (HL network)
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Jet Images out-perform JSS 9
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> CNN performs better than Jet Substructure ks Pile-up 95=50 _ pNN(image)
%) — BDT(expert)
> LL network (red line): AUC = 95.30% * 0.02% O 10° — D}, +mass
S : e
» HL network (blue line): AUC = 95.00% = 0.02% % | 21 FITIASS
X 1P — Jet mass
> But wait! Rk
» Where is that extra information coming from? 10
» Why don't Jet Substructure observables 1'
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Signal efficiency

contain this information?

» We've used a black box, so how can we

. . Baldi, P, Bauer, K., Eng, C., Sadowski, P, &
INvestl 9 ate? Whiteson, D. (2016, March 30). Jet Substructure
Classification in High-Energy Physics with Deep

Neural Networks. arXiv.org. http://doi.org/

10.1103/PhysRevD.93.094034



Another approach to generalizing JSS

» We weren't the only ones thinking about a Existing JSS exists in the EFP space
generalized approach to understanding JSS! o
Jesse Thaler, Patrick Komiske, Eric Metodiev (8) (8) (8)
€y = = ] 63 — . € = ]
https://arxiv.org/abs/1712.07 124

» Energy Flow Polynomials (EFP): A complete

Energy Correlation
linear basis set for jet substructure.

We can also explore more exotic observables.
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With variables and parameters (k,3)



https://arxiv.org/abs/1712.07124

Marry the two methods &

1. Black-box Learning
» Benefits: Powerful Performance and no need to hand-pick observables
» Drawbacks: Not interpretable. What are we learning about the problem?
2. Energy Flow Polynomials (EFP)
- Benefits:
> Physics motivated
» Modeling can be verified
> Uncertainties can be defined
» Compact and efficient

» Drawbacks: It's an infinite space. How do we begin to choose observables and their parameters?

Combine them! The DNN has learned how to solve the problem. Let
the DNN tell us what EFPs to choose!



Decision Ordering: A New Metric for Decision Similarity

» Consider boosted W vs QCD jet binary classification

» CNN has learned where to draw an ideal decision surface in its feature

space.
» We want a HL feature space that makes equally good decisions.

» How do we compare the decision surface for the CNN to the HL

features?



Decision Ordering

Comparing pair orderings

- Take a pair of signal (x) and background (x’)

features,

- Predictions for 2 NN (f(x) and g(x)) of the

features will increase/decrease relative to input
DO(x, x') = © |(f(x) = f(x) - (g(x) — g(x")))

Heaviside step function (©) sets DO=1 for

similar order, DO=0 for dissimilar order.

Average many examples = Average Decision

Ordering

ADQO’ = Z DO(x, x")

Similar Orderings

Dissimilar Orderings

fx) .. x  g(x) X f(x) * X X'
AR St S R Gt . gix) e
o
/ "g (XI) .’.’n
SEELEEL PRLEEEE v . 1 | ] @ X .
X f(X ) X g(X ) Tuy X _F(Xl) X X
+) (+) (+) ®
X x  gx) X
> ) .
e f(x’) ..x X g(x’) X
(-) (-)

ADO = 1 : Identical decisions

ADO = 0.5 : Random similarity




Guided Search 14

Why is ADO useful?

We can compare NN decision making. Where does the HL network and LL network disagree?

Signal/Background Pairs Red Space: LL and HL network disagree on

ordering
I No
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Yes

Use ADO to choose EFP that makes similar choices to the LL network in the “differently ordered” red space



observable to achieve equal

performance with the CNN!

We only need 1 new

Finding a new EFP with Guided Search

Observable AUC ADO|CNN, Obs.]

Miet 0.898 £ 0.004 0.807

cy=t 0.660 + 0.006 0.584

Ch=? 0.604 + 0.007 0.548

DSt 0.790 + 0.005 0.743

DJ=? 0.807 + 0.005 0.762

)=t 0.662 % 0.006 0.600

6HL 0.9504 £ 0.0002 0.971 Original HL
CNN 0.9531 + 0.0002 1.000
THLblack-box 0.9528 & 0.0003 0.971

Original HL + 1 EFP

Which EFP did we pick?

(k=2, p=1/2)
2.2.2.2
Z < ZbZ Zd\/ 65O
a,b,c,d=1

Noteworthy details

» EFP is not Infrared-sate (k # 1)
» B=1/2 is probing small-angle behaviour

» Chromatic #3 graph (probing deviations
from 2-prong substructure)

» Chromatic Number = Minimum number
of prongs to not vanish



Conclusion 16

Deep networks can identify gaps where low-level data contains unused

iInformation

ML Mapping strategies can capture and translate that information into

understandable physics



Questions?



