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Time-domain astronomy (transients)
Supernovae: exploding starsVariable stars

Neutron star mergers: kilonovae

Credit ESA Credit Carnegie-Irvine Galaxy 
Survey/NASA/JPL-Caltech
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cataclismic 
transients, tidal 
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in numbers: 

• 10-year survey, starting 2022 

• 1,000 images/night = 15 TB/night 

• 10 million transient candidates per night

in a nutshell: 

• telescope: 6.7-m equivalent  

• world’s largest CCD camera: 
3.2 * 109 pixels

LSST Project/NSF/AURA
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Legacy Survey of Space and Time 
(LSST)
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LSST ~ 10 million transient alerts per night 

?
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Select promising: 
• SNe, kN, fast transients, variable stars, AGNs … 
• Multi-wavelength/messenger transients 

Coordinate follow-up

http://fink-broker.org
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Select promising: 
• SNe, kN, fast transients, variable stars, AGNs … 
• Multi-wavelength/messenger transients 

Coordinate follow-up



• a community driven effort, open to anyone

• designed for the LSST alert stream


Goal: Multi-science transient broker 

MNRAS 2021, arXiv: 2009.10185 
A. Möller, J. Peloton, E. Ishida et al. (>30 coauthors)
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LSST ~ 10 million transient alerts per night 
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• Supernovae 
• Microlensing 
• Kilonovae 
• Gamma Ray Bursts 

• Solar system 
objects 

• Variable stars 
• …

ML classification FilteringEnriching

pyLIMA (Bachelet et al. 2017) 
SuperNNova (Möller et al. 2020) 

Active Learning (Ishida et al. 2019) 
Kilonovae (Biswas et al. in prep.) 
Early SNe (Leoni et al. in prep) 

Möller, Peloton, Ishida et al. 2020  arXiv:2009.10185

using ZTF alert stream
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 10. Delay (in days) between the first classification by
Fink of a supernova type Ia event (using the SN1 model) and
its peak measured brightness, between 01 November 2019 and 31
December 2019. Negative delays mean the classification happens
before the supernova reaches its peak brightness. We show only
data for supernovae type Ia that exploded after 01 November 2019
(from TNS query), and for which a peak can be identified. The
median delay is -6 days (orange dotted vertical line).

ison to those achieved by employing a randomly selected,
balanced, training sample enclosing half of the total data
(6280 objects). This indicates that the AL strategy has the
potential to achieve comparable results with a third of the re-
quired objects for training. Such a feature will be paramount
once we transition for a real data scenario with limited spec-
troscopic follow-up.

The main philosophy behind this module is to fully ex-
ploit details in the real data, which can result in good classifi-
cation with a minimum training, as such, in order to classify
real data it should ideally be allowed to perform queries on
the real data. We are currently processing past ZTF alert
stream with available labels to simulate the active learning
loop (Leoni et al., in prep).

4.5 Ongoing Solar System objects work

ZTF alert packets include some information about the dis-
tance and name to the nearest known Solar System object
from the Minor Planet Center16 archive if it exists. We use
this information to label alerts as confirmed Solar System
objects. In addition, we define a filter to identify candidates
for Solar System objects. We select alerts that have:

• Total detection number is 1 or 2 (ndethist).
• If 2 detections, observations must be within 30 min.
• No stellar counterpart from the PanSTARRS-DR1 cat-

alog, (sgscore1 < 0.76 (Tachibana & Miller 2018)
• No PanSTARRS-DR1 counterpart within 1.5 arcsec-

onds.

About 10% of all processed ZTF alerts between November
2019 and June 2020 are labelled as Solar System objects
(confirmed and candidates), and they are mostly located
along the ecliptic plane, as shown in Figure 5.

16 https://minorplanetcenter.net/

5 CONCLUSION

In this paper we present Fink, an alert broker designed for
the LSST alert stream. Our broker is the confluence between
time-domain astronomy and big data, required to fully har-
ness the power of LSST.

Our broker’s goal is to enable a wide variety of time-
domain science. To enable this, it fulfils traditional broker
tasks and goes beyond them by applying state-of-the-art
technology and machine learning algorithms.

Fink is based on R&D technology that is both robust
and scalable to LSST’s data volumes. We have tested our
framework with up to 100, 000 incoming alerts per minute
which is beyond the expected 20, 000 alerts per minutes for
LSST. We are capable to process such volumes within min-
utes and keep an alert database for post-processing. Further-
more, our highly modular design is shown to allow e�cient
integration of existing and emergent tools as well as trace-
able evolution of the state of the broker.

The broker is currently deployed on the cloud and is pro-
cessing the ZTF public live-alert stream. Between November
2019 and June 2020, Fink has received 25 million alerts and
processed 8 million alerts from this public stream. All alerts
(received and processed) are saved in the Fink database to
enable post-processing.

In this work, we have shown that Fink is able to select
microlensing, GRB counterparts and supernova candidates
with current science modules using the ZTF public alert
stream. These initial science cases showcase the performance
of our cross-matching (catalogues and multi-wavelength sur-
veys) and classification modules together with customisable
filtering.

We are currently working on developing more science
modules and improving our current ones. We invite the com-
munity for new contributions on new and existing science
cases. Importantly, we are constructing web-interfaces and
API services to enable a seamless user experience and en-
able automatising follow-up coordination with observational
facilities and teams.

Fink is an evolving framework and this work reflects
its status as of August 2020. As it is open sourced, its up-
dated status can be found in our GitHub repository 17. All
parts include comprehensive test suites and a general docu-
mentation with installation instructions (locally and in the
cloud) and tutorials are available from the project website18.
Contributions and bug reports are encouraged.

SOFTWARE PACKAGES USED

Finkmakes extensive use of several libraries and frameworks
among which projects from the Apache Software Foun-
dation19 (Apache Hadoop, Apache HBase, Apache Kafka,
Apache Spark), astropy, numpy, matplotlib, pandas, py-
torch, scikit-learn (McKinney 2010; Van Der Walt et al.
2011; The Astropy Collaboration et al. 2018; Astropy Col-
laboration et al. 2013; Hunter 2007; Paszke et al. 2019; Pe-
dregosa et al. 2011).

17 https://github.com/astrolabsoftware
18 https://fink-broker.org/
19 https://apache.org/
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Figure 8. Top: Lightcurve of a supernova type Ia event classified
by Fink (ZTF object ID: ZTF19acmdpyr, IAU Designation: SN
2019ugu). Blue circle markers and orange circle markers indicate
the g and r bands, respectively. Error bars come from the pho-
tometry. This supernova was first reported in TNS by the broker
AMPEL (Nordin et al. 2019) on 2019/11/06 (MJD 58793). Bot-
tom: Evolution of the classification probabilities as a function of
time using SuperNNova (Möller & de Boissière 2019): the first
model (SN1, green triangle markers) disentangles type Ia SNe vs.
non-Ia SNe, and the second model (SN2, red diamond markers)
classifies a general supernova class (SNe Ia and Core-Collapse)
vs. non-SNe events. Fink classification using only SN1 probabil-
ity value above 0.5 would have happened on 2019/11/02 (dotted
vertical line, MJD 58789), while using both SN1 and SN2 proba-
bility values above 0.5 would lead to a classification on 2019/11/04
(dashed vertical line, MJD 58791). This supernova was classified
particularly early by Fink, and more information about the clas-
sification delays are shown in Fig 10.

Figure 9. Alert cutouts corresponding to the supernova type Ia
event shown in Fig 8 at the time of first classification by Fink:
the observation (left), the reference image used in the subtraction
(middle), and the di↵erence image (right). The bright object on
the top-left of the supernova is a foreground star. We use cutouts
to visually inspect candidates.

• To filter long-term variable objects we require less than
400 detections in the ZTF survey (ndethist).

• To filter variable stars not present in our catalogues, we
require a Star/Galaxy score by SExtractor > 0.4.

We apply these requirements to the ZTF alerts stream
and obtain a selected sample as shown in Table 3. We are
able to reduce the alert stream up to 8% while maintaining
> 75% of classified SNe Ia and SNe in the sample. Those
SNe which are not selected are visually found to have only

sample # alerts % alerts # unique # unique
SNeIa SNe

quality cuts 2,417,284 100% 296 366
selection cuts 576,190 23.84% 258 319

SN1>0.5 365,228 15,11% 242 296
SN2>0.5 208,978 8.65% 223 275
SN1>0.6 308,822 12.78% 229 278
SN2>0.6 145,736 6.03 % 196 245

Table 3. The e↵ect of cuts on the ZTF alert stream between
November and December 2019. Columns indicate cut type, num-
ber of alerts selected, percentage of alerts for reference, number
of unique SNe Ia and SNe recovered (from TNS query). First,
alerts that satisfy our standard quality cuts (see Section 3.2).
Then selection is done by applying SN-filtering specific cuts (se-
lection cuts) defined in Section 4.4.1 combined with a threshold
on either the classifier model SN1 or SN2 (e.g. SN1 > 0.5).

a handful of photometric epochs or to be at the end of their
visible variability (tail of the light-curve).

For spectroscopically identified SNe Ia in the alert
stream we estimate the delay of classification with respect of
the observed peak brightness (maximum flux measured by
ZTF). We obtain a median delay of 6 days before observed
peak brightness for SN1. As shown on Figure 10, SN1 is able
to identify SNe Ia well before observed peak for this sample.
Such an ability will be particularly relevant for coordinating
follow-up e↵orts in the era of LSST.

These selected samples can be further reduced by apply-
ing additional cuts or increasing the classification threshold
as can be seen in Table 3. Through visual inspection, we
find that a large number of these alerts present some type
of variability consistent with other transient phenomena or
have a reduced number of photometric epochs (< 10). Sub-
sequent work will strive on improving science modules and
filtering techniques to raise the purity and e�ciency of our
selection.

Future improvements to this science module include ex-
panding pre-trained models to other SN and transient types,
including new core-collapse templates e.g. (Vincenzi et al.
2019), improving the ZTF survey simulation and implement-
ing Bayesian NNs available in SuperNNova to obtain clas-
sification scores with meaningful model uncertainties.

4.4.2 Supernova science module with Active Learning

We are currently developing a supernova classification mod-
ule which uses a Random Forest (RF) classifier (Statistics &
Breiman 2001) coupled with an uncertainty sampling active
learning strategy to construct an optimised training sample.
The module follows the paradigm established by Ishida et al.
(2019b), but employs a feature extraction method based on
on a sigmoid function to model raising light curves (Leoni
et al., in prep).

We tested a preliminary implementation on ZTF simu-
lations (Muthukrishna et al. 2019) consisting of 12, 560 ob-
jects of which 7, 773 (i.e. ⇡ 62% of the total) are SN Ia.
The learning loop started from an initial training sample of
10 objects (5 of which were SNe-Ia). After 2000 iterations
where batches of 1 object each were added to the training
sample per iteration, the classifier achieved an accuracy of
0.761 ± 0.006 . This represents an ⇡2% increase in compar-
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Figure 9. Evolution of the classification results as a function of the survey duration for the time-domain AL considering the SNPCC
training set as completely given in the beginning of the survey.

ered by training data (higher magnitudes). At 900 queries,
the set of queried objects chosen by passive learning (red
line, middle column) follows closely the distribution found
in the target sample (blue), - but this does not translate
into a better classification because the bias present in the
original training was not yet overcome. On the other hand,
the discrepancy in distributions between the target sample
(blue region) and the set of objects queried by AL (red line,
right-most column) at 900 queries is a consequence of the ex-
istence of the initial training18. The fact that AL takes this
into account is reflected in the classification results (figure
5).

These results provide evidence that AL algorithms are
able to improve SN photometric classification results over
canonical spectroscopic follow-up strategies, or even passive
learning in a highly idealized environment19. However, in
order to have a more realistic description of a SN survey, we
need to take into account the transient nature of the SNe
and the evolving aspect of an observational survey.

18 The reader should keep in mind that after 1000 queries the
model is trained in a sample containing the complete SNPCC
spec sample added to the set of queried objects.
19 A result already pointed out by Gupta et al. (2016).

5 REAL-TIME ANALYSIS

In this section, we present an approach to deal with the time
evolving aspect of spectroscopic follow-ups in SN surveys.
This is done through the daily update of:

(i) identification of objects allocated to query and target
samples,

(ii) feature extraction and
(iii) model training.

We begin considering the full SNPCC spectroscopic
sample completely observed at the beginning of the survey
- this allows us to have an initial learning model. Then, at
each observation day d, a given SN is included in the analy-
sis if, until that moment, it has at least 5 observed epochs in
each filter. If this first criterion is fulfilled, the object is des-
ignated as part of the query sample if its r-band magnitude
is lower than or equal to 24 (mr  24 at d) - otherwise, it
is assigned to the target sample20. Figure 8 shows how the
number of objects in the query (yellow circles) and target

20 We consider an object with r-band magnitude of 24 to have the
minimum brightness necessary to allow spectroscopic observation
with a 8-meter class telescope.
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Figure 5. Evolution of classification results as a function of the number of queries for the static full light curve analysis.

mined. We fit each filter independently in flux space with
a Levenberg-Marquardt least-square minimization (Madsen
et al. 2004). Figure 4 shows an example of flux measure-
ments, corresponding errors and best-fit results in all 4 filters
for a typical, well-sampled, SN Ia from SNPCC data.

3.2 Classifier

Once the data has been homogenized, we need a supervised
learning model to harvest the information stored in the spec-
troscopic sample. Analogous to the feature extraction case,
the choice of classifier also impacts the final classification
results for a given static data set (Lochner et al. 2016). In
order to isolate the impact of AL in improving a given config-
uration of feature extraction and machine learning pipeline,
we chose to restrict our analysis to a single classifier. A com-
plete study on how di↵erent classifiers respond to the update
in training provided by AL is out of the scope of this work,
but is a crucial question to be answered in subsequent stud-
ies. All the results we present below were obtained with a
random forest algorithm (Breiman 2001).

Random forest is a popular machine learning algorithm
known to achieve accurate results with minimal parameter
tuning. It is an ensemble technique made up of multiple de-
cision trees (Breiman et al. 1984), constructed over di↵erent

sub-samples of the original data. Final results are obtained
by averaging over all trees (for further details, see appendices
A and B of Richards et al. 2012a). The method has been suc-
cessfully used for SN photometric classification (Richards
et al. 2012a; Lochner et al. 2016; Revsbech et al. 2017). In
what follows, we used the scikit-learn11 implementation
of the algorithm with 1000 trees. In this context, the prob-
ability of being a SN Ia, pIa, is given by the percentage of
trees in the ensemble voting for a SNIa classification12.

3.3 Metrics

The choice of a metric to quantify classification success goes
beyond the use of classical accuracy (equation 2) - especially
when the populations are unbalanced (figure 3). In order to
optimize information extraction, this choice must take into
account the scientific question at hand.

In the traditional SN case, the goal is to improve the
quality of the final SNIa sample for further cosmological

11 http://scikit-learn.org/
12 In this work we are concerned only with Ia ⇥ non-Ia classifi-
cation. The analysis of classification performance using other SN
types will be the subject of a subsequent investigation.
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Figure 8. Lightcurve of a microlensing event candidate classi-
fied by Fink (ZTF object ID: ZTF18acvqrrf). Blue markers and
orange markers indicate the g and r bands, respectively. Large
circle markers and small circle markers indicate the Fink and
ZTF DR3 data, respectively. There is a small overlap between
the two datasets, but DR3 data stops at MJD=58846.2608449,
where Fink data take over alone. The two vertical dashed green
lines enclose alert data that lead to the first classification as mi-
crolensing by Fink. Error bars are estimated by the photometric
algorithm only, probably leading to underestimation of errors here
and partly explaining the high �2 values in Table 2.

• the alert must not be classified as SN Ia candidate by
Fink,

• the total history of the object must be less than 50 mea-
surements (to select alerts corresponding to recent events
only),

• the Star/Galaxy score of closest source from the
PanSTARRS-DR1 catalogue must be above 0.7 (star),

• we keep candidates on low Galactic latitudes (|b| < 20
degrees).

We are left with 6 alerts representing 4 unique ob-
jects (timestamp of first classification as microlensing):
ZTF18acvqrrf (2020-01-12), ZTF20aaaacan (2020-01-26),
ZTF20aauqwzc (2020-05-11), ZTF20aazdsjr (2020-06-22).
Among the 4 objects, ZTF20aazdsjr appears to be a super-
nova type Ia not correctly classified by Fink at the moment
of the alert, and ZTF20aaaacan does not appear as a mi-
crolensing event. We show the light-curve for ZTF18acvqrrf
in Figure 8, and the results for a microlensing point-source
point-lens rectilinear model fits in Table 2, including or
not the data from the recent ZTF DR3 release. Unfortu-
nately the constraints are not significant, given the data
collected, and we cannot conclude on the microlensing na-
ture of this event as well as of the other remaining event
(ZTF20aauqwzc).

A candidate rate of 0.1% is still too high for LSST (this
would correspond to 10,000 candidates per night before se-
lection cuts), and we are working on a better selection of
candidates as well as better classification models. In partic-
ular, the complete knowledge of the pre-event light-curves
will allow to limit the search for microlensing within the
sub-sample of stars that have been completely stable since
the beginning of the survey, and therefore drastically reduce
the false positive rate. The multi-band version of the LIA

Event t0 (MJD) tE (day) u0 �2/dof

ZTF18acvqrrf 58854.5 ± 0.1 14 ± 30 1 ± 4 22.4
+DR3 58854.8 ± 0.6 23 ± 7 0.6 ± 0.3 14.8

Table 2. Fit results for the microlensing event candidate
ZTF18acvqrrf

discovered by Fink, using pyLIMA (Bachelet et al. 2017) on the
simple PSPL model (1-sigma error quoted). The fit combines
data for the 2 filter bands g and r. We also perform a fit using
the available ZTF DR3 data (second line). In all cases, the

constraints are not significant, and we cannot conclude on the
microlensing nature of this event.

should also significantly improve the classification quality.
We also plan to periodically re-classify objects using aggre-
gated object data over time.

4.4 Supernovae

Fink obtains classification scores for potential supernovae
at any stage of its evolution using the Deep Learning frame-
work SuperNNova (Möller & de Boissière 2019) introduced
in Section 4.4.1. We train this classifier on simulations from
(Muthukrishna et al. 2019) and test it with an independent
subset of this simulation. The performance of our classifica-
tion module is further evaluated using data from the ZTF
public stream. For reproducibility, we make available the
alerts and code used for results in this section 18.

We are also currently developing another supernova
module that takes advantage of an Active Learning approach
for early classification. We introduce this method in Sec-
tion 4.4.2.

4.4.1 Supernova science module

The supernova module uses the classification scores of Su-
perNNova (Möller & de Boissière 2019). SuperNNova is
a Deep Learning framework designed to classify light-curves
using photometric data only (fluxes and errors in di↵erent
band-passes) thus does not require feature extraction or pre-
processing. This classifier is able to provide classification
scores at any light-curve stage, including early SNe.

We train two SuperNNova models using ZTF-realistic
light-curve simulations. The first model, SN1, was trained
to disentangle type Ia SNe vs. non-Ia SNe. When evalu-
ated using simulations, SN1 has a classification accuracy of
75.17 for complete light-curves and 58.80 for classification
before maximum light of the light-curve. The second model,
SN2, classifies a general supernova class (SNe Ia and Core-
Collapse) vs. non-SNe events and is able to obtain accuracies
up to 87.07 for complete light-curve classification.

We apply these classifiers to 2, 417, 284 ZTF alerts from
November and December 2019 that pass quality cuts. Selec-
tion is done filtering on added values from the alerts, super-
novae classification modules and the cross-matching module.

Performance is evaluated on the ZTF alert stream
by computing the reduction of the total alert stream and
the number of spectroscopically supernovae selected. We

18 Fink annotated alerts and TNS SNe are available at
DOI:10.5281 and to reproduce results use this jupyter notebook.
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Figure 3. Current single core alert throughput (alerts/second)
for each science module deployed in Fink, using replayed ZTF
alert data. Microlensing: microlensing classification based on
Lens Identification Algorithm (LIA) Godines et al. (2019), Ac-
tive Learning: supernovae classification based on Random Forest
Ishida et al. (2019a), SuperNNova: supernovae classification using
SuperNNova Möller & de Boissière (2019), xMatch: CDS cross-
matching service. We also show the I/O throughput, that is the
number of alerts per second written on HDFS by a single CPU.
For reference, the grey dashed horizontal line shows a single sci-
ence module throughput corresponding to 2 seconds processing
using 100 CPU at LSST scale (10,000 alerts received every 30
seconds, before applying quality cuts). While we are working to
bring all performances above this threshold, the classifiers that
use additional filters before processing alert data can a↵ord a
lower throughput (e.g. supernovae modules or microlensing).

3.3.3 Currently implemented science modules

We summarise here the currently implemented science
modules in Fink. Additional ones are in development and
new contributions are encouraged:

Cross-matching modules:

• Catalogues: Simbad catalog (Wenger et al. 2000), with
a matching radius of 1 arcsecond, using the xmatch service
provided by CDS.

• Surveys: LIGO/Virgo, Fermi, Swift alerts via the
Comet broker (live), and survey public catalogues (post-
processing).

• Other services: Transient Name Server (TNS) for recent
classifications.

Classification modules:

• Microlensing: Classification of events using LIA based
on Godines et al. (2019).

• Supernovae partial and complete light-curve classifica-
tion: Recurrent Neural Network (RNN) architecture on Su-
perNNova (Möller & de Boissière 2019).

Additionally we determine potential Solar System ob-
ject based on a series of filters.

3.4 Post-processing with database

The broker collects and stores all incoming alerts, as well as
additional information derived by its science modules. The
data is stored on the HDFS cluster (see Fig 1), and it remains

accessible for further investigations or re-processing. Given
the multi-TB size of the dataset, specific tools are required
to analyse it e�ciently such as Apache Spark which allows
real-time or post-processing analyses with little changes and
on the same computing platform. Apache Spark has the ad-
vantage of being able to hold the dataset in the memory of
the di↵erent machines as long as it is required for the anal-
ysis, and to combine the results globally only at the end,
transparently to the user, resulting in very high performance
when exploring the historical data.

All the processing tools used in live processing by the
broker can be re-run on historical data collected over the
years. Fink is thus able to quickly perform comparisons of
performances of di↵erent machine learning models, adding
cross-matches with other catalogues, or exploring new pro-
cessing modules while keeping the development cost low.
Further, all the broker tools and science modules are ver-
sioned which will be key to properly track selection func-
tions for a variety of science cases during the LSST decade
and beyond.

3.5 Feedback

One of the defining features of Fink is its designed ability to
improve the accuracy of added values as the survey evolves
by enabling the use of adaptive learning strategies. Each sci-
ence module which makes use of such strategies encapsulates
the learning loop within it.

To improve the accuracy of specific added values, po-
tentially informative objects are identified in the stream and
their labels are searched continuously in known public data
bases using our cross-matching module. Moreover, Fink will
make public the list of objects of interest for each science
module, ensuring the information is spread through the spec-
troscopic follow-up community through standard channels
such as TNS for transient discovery, VOEvents for multi-
messenger counterparts and Target of Observation Manager
(TOM10) systems interfacing between brokers and follow-up
facilities.

Once a new informative label is available, the user is
notified and the machine learning models can be retrained.
This process can be computationally very expensive depend-
ing on the volume of training data, complexity of the model
and frequency with which labels are provided. For the first
two science modules employing adaptive learning strategies
(SN and Anomaly Detection) Fink resources will be avail-
able for automatic model update. Other community projects
willing to implement such strategies can take advantage of
the infrastructure provided by Fink for cross-match and ad-
vertisement of desired labels but will be initially responsi-
ble for retraining their own modules. Further arrangements
to automatise this process within the broker will require an
evaluation of the computational cost and available resources.

The constant update of the machine learning models
also means that Fink will be able to reprocess previous alerts
and provide more accurate classifications of historical with
the evolution of the survey. We plan to hold frequent data re-
leases with updated classifications and anomaly scores which

10 https://lco.global/tomtoolkit/
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• ML is key for selecting promising events

• Fink is already processing ZTF data stream (MoU 2020).

• First science modules deployed: SNe, GRB, microlensing, kilonovae…


• We want to connect to new teams and continue applying state-of-
the art ML algorithms!

Möller, Peloton, Ishida et al. 2020  
arXiv:2009.10185

See E. Ishida talk on 
anomaly detection 

tomorrow!

https://fink-broker.org

