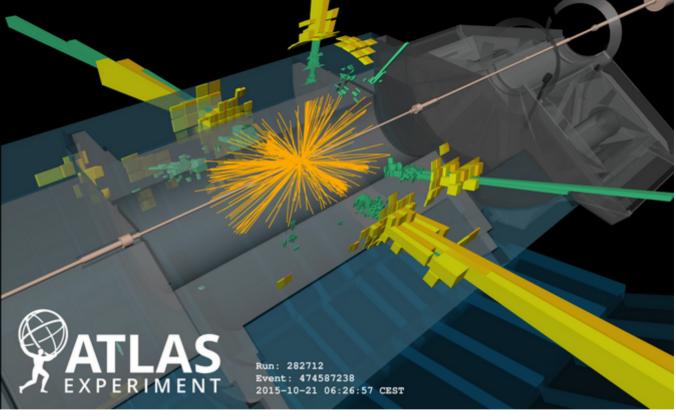
Hadronic jets E and M calibration with DNN

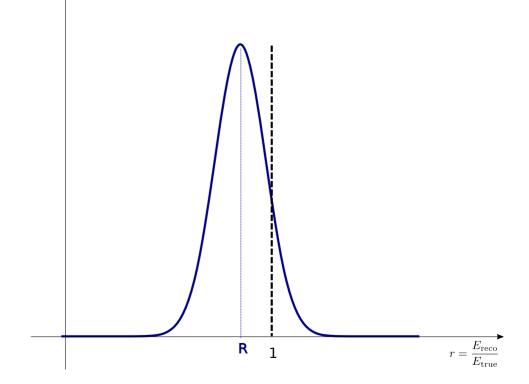
Jet Calibration



- Hadronic jets detected by ATLAS need to be calibrated
- Developed a DNN-based method to simultaneously calibrate jet E and mass
- Continuing pioneer work from this PUB Note

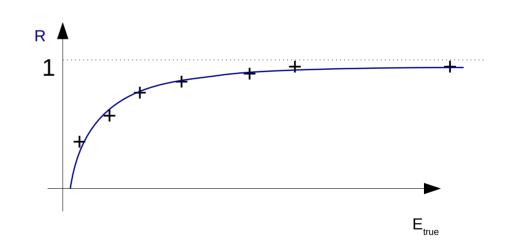
Introduction : jet response

- Particle jets with a given E_{true} are reconstructed with a E_{reco} distribution
- Usually, discuss jet E response
 - r=E_{reco}/E_{true} : individual response for 1 jet
 - R = mode of r distrib, the "response" at E_{true} ↔ Jet Energy Scale (JES)



Introduction : jet response

- Particle jets with a given E_{true} are reconstructed with a E_{reco} distribution
- Usually, discuss jet E response
 - r=E_{reco}/E_{true} : individual response for 1 jet
 - R = mode of r distrib, the "response" at E_{true}
- R depends on E_{true} ... and other parameters : η , m, $EM_{fraction}$,...



Introduction : jet calibration

• Goal : find the correction factor **C** defining $E_{calib} = C E_{reco}$

Such as : $\mathbf{R}_{calib} = mode(r_{calib}) = \mathbf{1}$

- C must depend on reconstructed quantities E_{reco} , η_{reco} , m_{reco} ,
- We want to calibrate E and mass at the same time. So we need a function

 $C: \mathbb{R}^{\mathsf{N}} \to \mathbb{R}^2$

• Looks like a regression problem...

Calibration with DNN : difficulties

Basic idea : regress R_E and R_{mass} vs (E,mass,\eta,etc...)

- Need to learn the **mode** of the targets, not the targets
 - Use dedicated loss functions
- R varies strongly vs η because of the detector structure (calorimeter boundaries)
 - Hard to model sharp variations \rightarrow use "input annotation"

Learning the mode

How to learn the mode of the response

- Can not use any loss function
 - MSE loss $||r_{pred}-r_{true}||^2 \rightarrow NN$ learns the **mean**
 - Bias when r distrib is asymmetric
- Considering 2 approaches
 - Leaky Gaussian Kernel (LGK) (introduced here)
 - Mode exactly learned by $\delta(y-y_{pred})$ (Dirac function)
 - LGK is a surrogate function : LG

K loss = exp
$$\left(-\frac{(r_{\text{target}} - r_{\text{pred}})^2}{2\alpha}\right) + \beta |r_{\text{target}} - r_{\text{pred}}|$$

- Fixed parameters α , β ~1e-3
- Mixture Density Network (MDN)

MDN loss

- Goal is to "predict" the distribution of response given $\mathsf{E}_{\mathsf{true}}$
- First, assume distrib is gaussian : $P(r|E_{true}) = g(r|\mu(E_{true}), \sigma(E_{true}))$
- Thus the NN must learn μ and σ
- Optimal μ and σ are obtain when maximizing the likelihood : $\prod_{i \in \text{inputs}} P(r^i | E^i_{\text{true}})$
- In practice : $^{i \in inputs}$
 - have the NN predicts μ and σ
 - choose the log likelihood as the loss

$$\operatorname{oss}((\mu, \sigma), r_{\text{target}}) = \log(\sigma) + \frac{1}{2} (\frac{\mu - r_{\text{target}}}{\sigma})^2$$

9

21-03-16

MDN loss real case

- But real distributions are not gaussian !
- We can assume the core of distribution are ~gaussian
 - Core is what matters : we want the **mode**
- Proceed as follows :
 - Start training the NN until reasonable μ and σ are predicted
 - Typically, 1 or 2 epochs are enough
 - Replace gaussian in previous formula by truncated gaussian at N σ (ex: N=3 or N=1)
 - Continue training, possibly reducing N from time to time

How to learn the mode of the response

• LGK loss

LGK loss = exp
$$\left(-\frac{(r_{\text{target}} - r_{\text{pred}})^2}{2\alpha}\right) + \beta |r_{\text{target}} - r_{\text{pred}}|$$

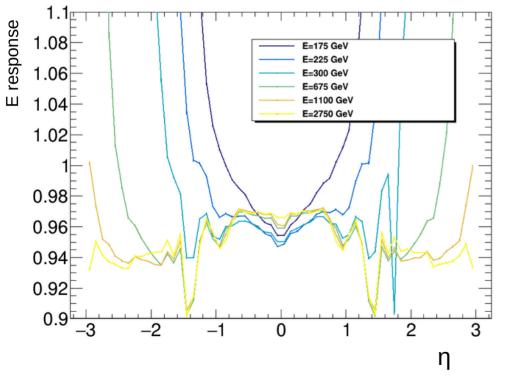
MDN loss

- prediction =
$$(\mu, \sigma)$$

$$loss((\mu, \sigma), r_{target}) = log(\sigma) + \frac{1}{2} (\frac{\mu - r_{target}}{\sigma})^2$$

Learning the η structure

What do we expect ?

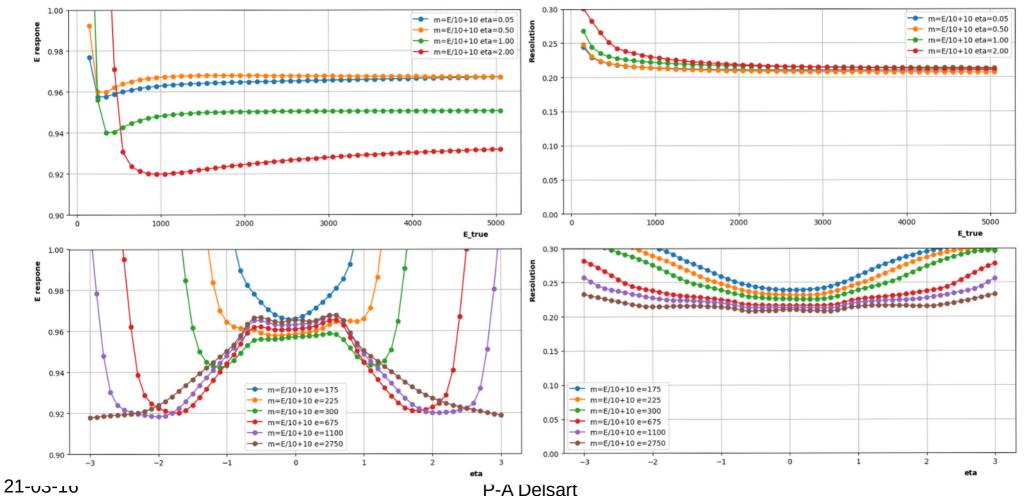


- E response calculated "manually"
 - In bins of (E,eta) as in standard EtaJES
 - Thus ignoring dependencies
 on mass & NPV
 - Fit distribution in each of these bins \rightarrow obtain R
 - Plot R vs η for a few E bins

NN prediction for response and resolution

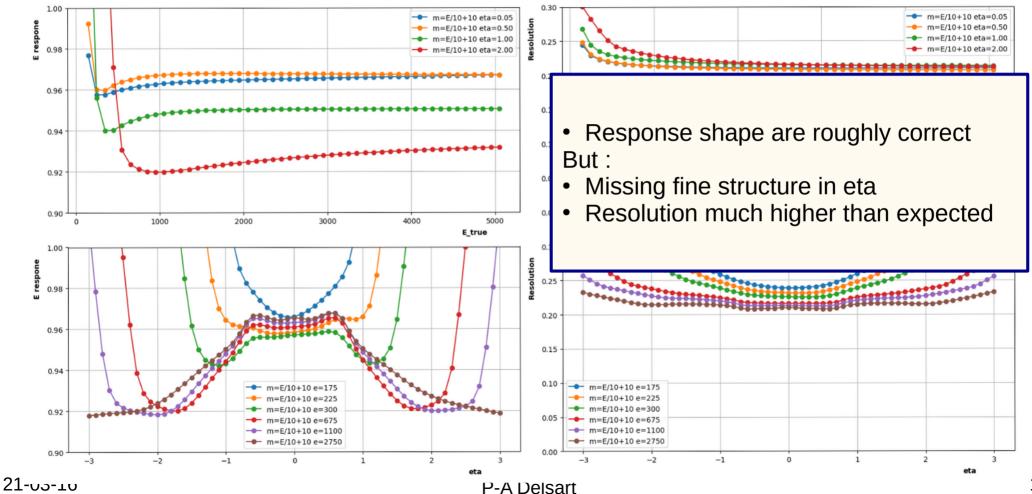
- Learn just E Response with MDN loss
 - Thus also predicting E resolution
 - Details in following slides
- Try to replicate previous plot

NN prediction for response and resolution



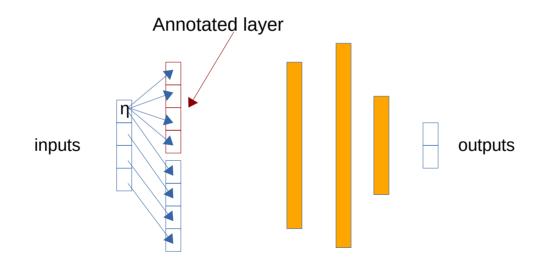
15

NN prediction for response and resolution



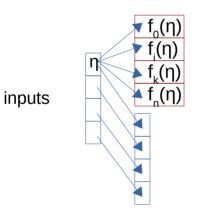
Input Annotation

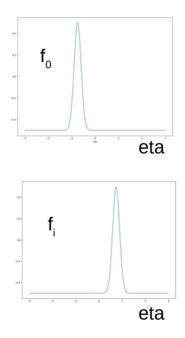
• Increase the input by adding "features"



Input Annotation

• Increase the input by adding "features"



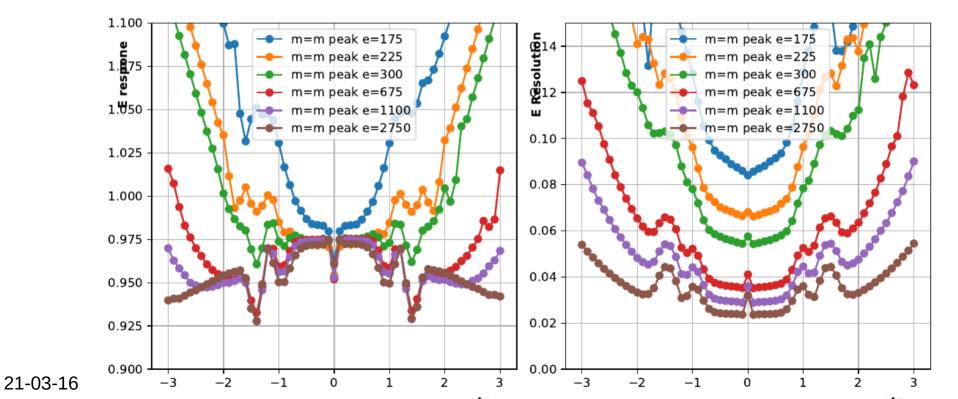


Gaussian Annotation

 Gaussian centers set on detector cracks
 Intention : add the "distance to the crack" information to the NN

NN predictions with Input Annotation

- NN E response predictions
 - Recover the η structure of the response



NN implementation details

Input handling

- Use 260M simulated large-Radius jets
 - do not fit in memory
 - Custom solution :
 - Randomly place jets data in ~10M entries flat TTrees/TFiles
 - streaming inputs from files with uproot
 - Other suggestion of workflow ? Use TFRecord + protobuff files ?
- Features and targets normalization
 - Linear scaling to ~[-1,1]
 - Although targets are naturally ~1, normalization still important to avoid training unstability
 - Or use a final activation centred around 1 (like 1+tanh(x))

P-A Delsart

Input handling

- Use 260M simulated large-Radius jets
 - do not fit in memory
 - Custom solution :
 - Randomly place jets data in ~10M entries flat TTrees/TFiles
 - streaming inputs from files with uproot
 - EMFrac, EM3Frac, Tile0Frac Other suggestion of workflow ? Use TFRecord + protobu
- Features and targets normalization
 - Linear scaling to \sim [-1,1]
 - Although targets are naturally ~ 1 , normalization still impd D2, Ow unstability EffNConst (== $\Sigma(p_T)^2/\Sigma(p_T^2)$), GroomMratio (==M_{softdrop}/M_{ungroomed})
 - Or use a final activation centered around 1 (like 1+tanh(x))

P-A Delsart

15 Input features :

EffNTracks (== $\Sigma(p_{Ttrack})^2 / \Sigma(p_{Ttrack}^2)$)

E, mass, n

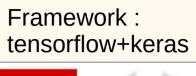
NeutralFrac.

SumPtTrkFrac

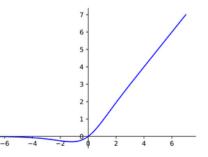
NPV, μ

NN architectures

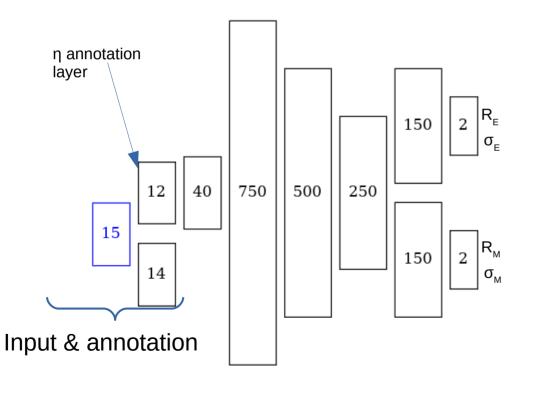
- Tested various architectures
 - Including various layer sizes
 - MDN and/or LGK losses



- Presenting here 2 architectures with MDN loss, 1 with LGK loss
- Activation functions
 - Internal layers : mish (a smooth ReLU)
 - Last layer : tanh

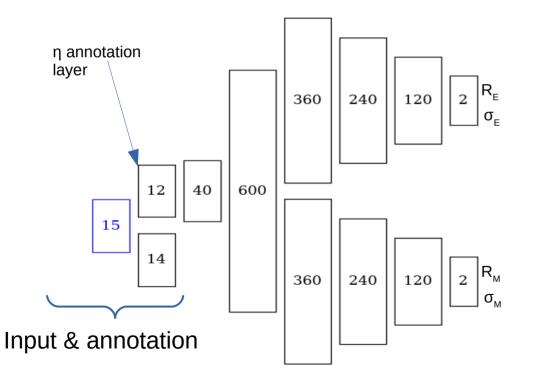


NN architectures

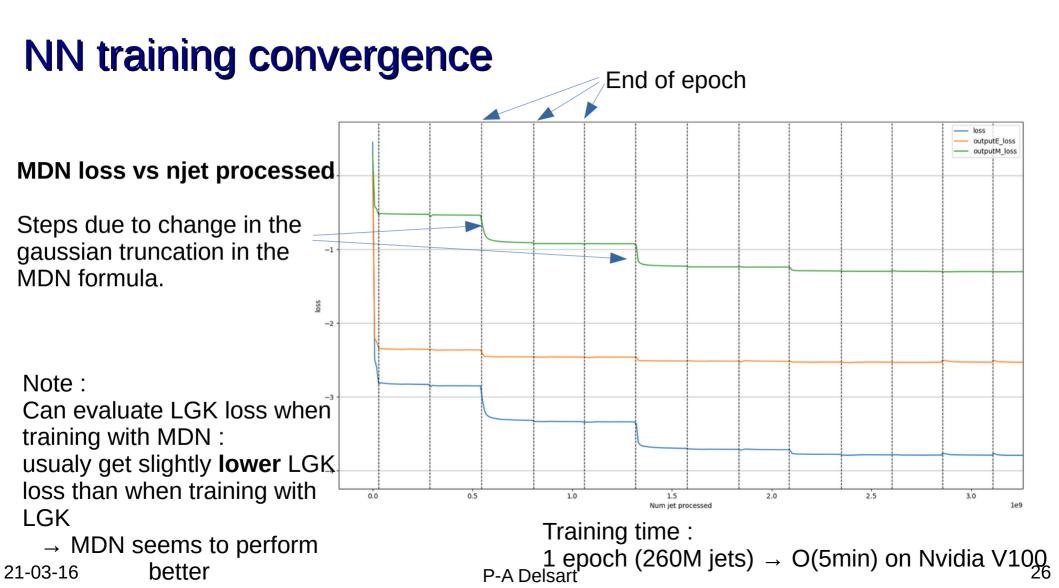


- Triangular shape (labelled T0 in following plots)
- ~620K trainable weights
- Fork at the tip allows
 - 2 Dedicated sets of weights for $R_{\scriptscriptstyle E}$ and for $R_{\scriptscriptstyle M}$
 - 2 loss functions, tunable independently

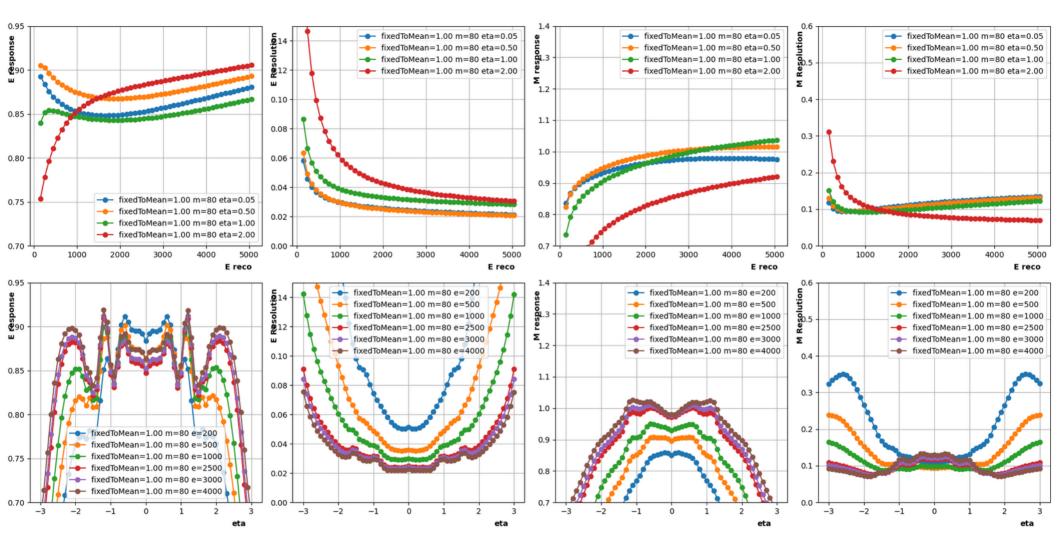
NN architectures



- Deep fork shape (labelled DeepF in following plots)
- ~690K trainable weights
- Much deeper fork :
 - 2 independent deep NN to predict ${\rm R}_{\rm E}$ and ${\rm R}_{\rm M}$ with a common base
- Architecture also tested for the LGK loss (labelled LGK)



NN predictions



21-03-16

P-A Delsart

NN predictions

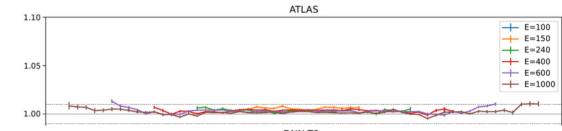
- All 3 tested NN predict similar E&M responses
 - No identical though, predictions vary within ~1% for E and a 2-3% for M

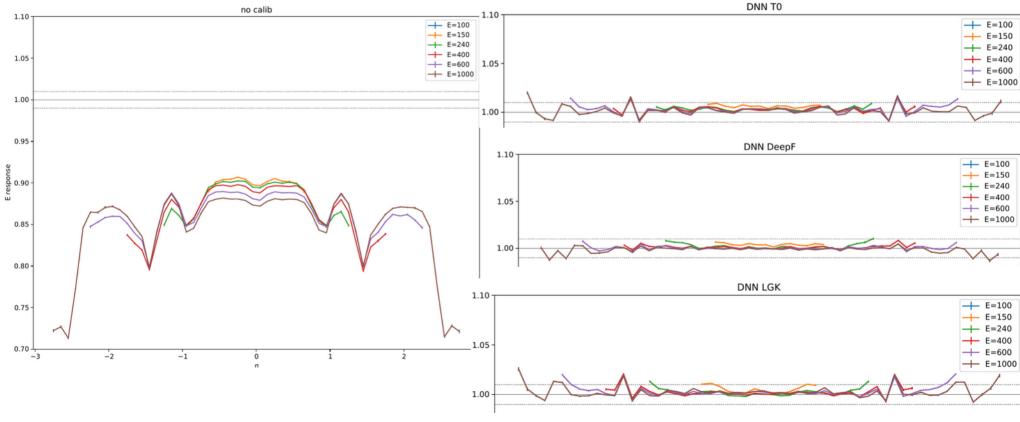
NN performances

- Comparing NN calibrated responses with ATLAS standard JES and JMS calibration
 - And uncalibrated responses
- Use simple bins in (E, η), (E, η , NPV) or (p_{τ} ,m, η) to evaluate mode&resolution of response distributions
- Then plot mode&resolution vs variables

Resolution = IQR/response

E response vs η

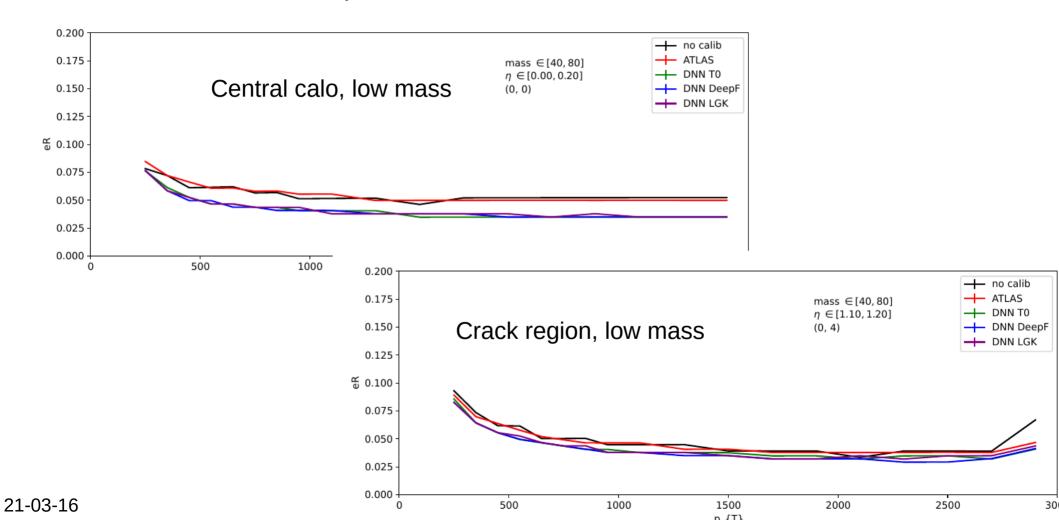




21-03-16

P-A Delsart

E resolution vs p_{T}

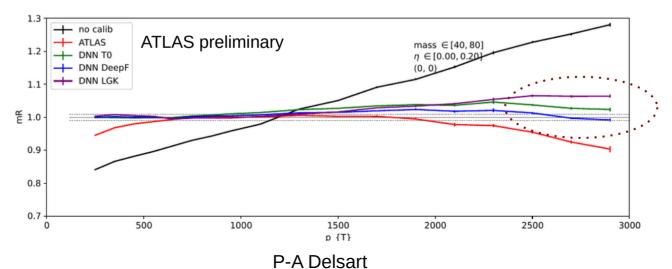


NN performances

- DNN perform very good E and mass calibration
 - Better than standard calib in almost all respects
 - Energy/mass scale and resolution
 - lower pile-up dependence
- All DNN perform similarly
 - "DeepF" variant looking a bit better

NN performances, limitations?

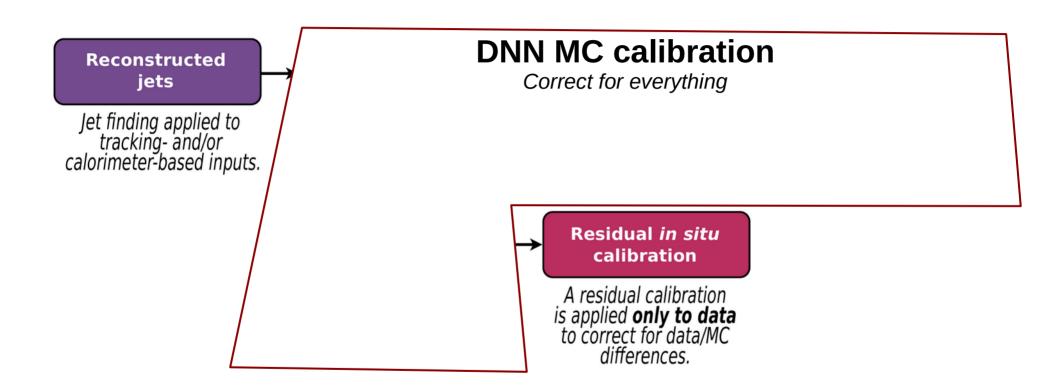
- Some differences in mass closure at high E
- difficult to understand and control
 - Not correlated to final loss : very similar in all cases
 - Giving more weight to highE/low mass events doesn't help
 - Maybe we just lack statistics at high E/low mass ... ?



Conclusions

- Developed a DNN-based simultaneous calibration of jet E & mass
 - 2 noteworthy aspects : learning distrib mode & input annotation to deal with sharp η variations
- DNNs perfom globally better than ATLAS standard calib
 - Better closure & resolution
 - But details are hard to understand & control
 - What does matter ? NN architecture ? Event weights ? Loss function parametrization ?
 - Makes it difficult to define reliable & robust calib procedure
- To do :
 - Check impact of input distributions and weighting schemes (related to above difficulties ?)
 - Check performances with non QCD-initiated jets : W/Z, H and top jets (on-going : looking great !)

backup



Numerical Inversion

A procedure to avoid dependence on input sample distribution

- Learn R as function of E_{true} with a 1st DNN, call it R_{DNN1}
- Define $E_{NI} = R_{DNN1}(E_{true}) E_{true}$ - Numerical inversion of E_{true} : "best guess of E_{reco} given E_{true} "
- Learn R as a function of E_{NI} with a 2nd DNN, call it R_{DNN2}

• Define
$$C(E_{reco}) = 1/R_{DNN2}(E_{reco})$$

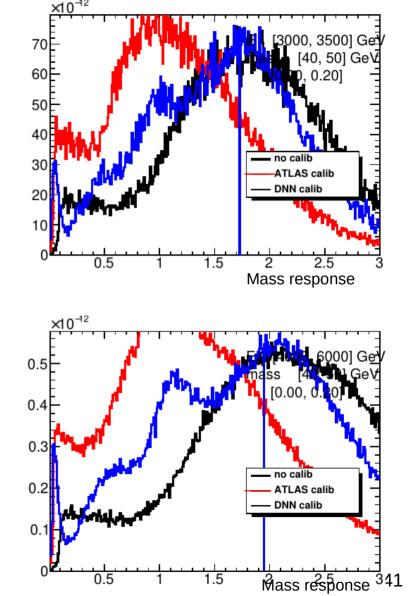
Numerical Inversion

Numerical Inversion

- Procedure used in standard calibration involving learning 2 Response functions
- Using DNN amplifies intrinsic difficulties related to calibrated quantity X as function of X
 - Occurs for mass because response varies strongly and has large width
- Contrary to standard techniques, no numeric mitigation possible with DNN (or very complicated)
- Forget numerical inversion, just regress directly vs reco quantities
 - Will have to carefully evaluate potential bias due to input distrib

Issues with mass calibration

- Calibrated mass distributions also problematic
 - High E, low masses
- Double (triple) peaks appearance
- Known effect due to mathematical features of calibrating X as function of X
- Amplified by NN and very difficult to mitigate
 - mitigation procedure in standard calib unapplicable with DNN



21-03-16

P-A Delsart

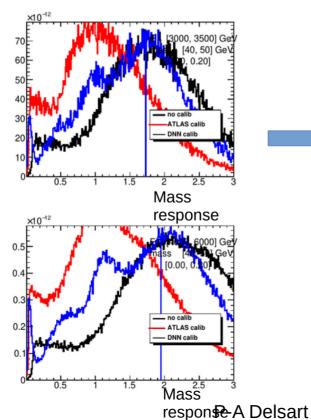
Issues with Numerical Inversion

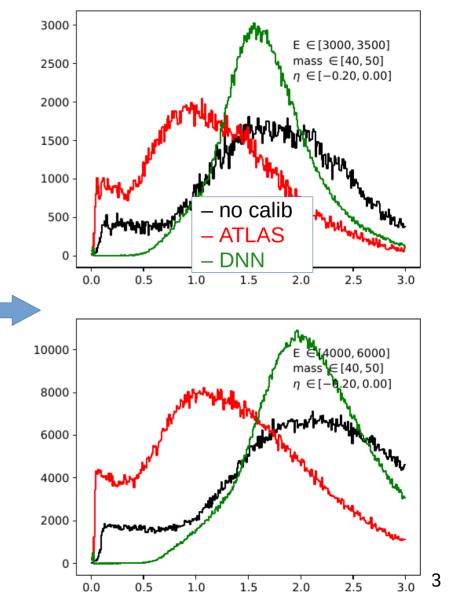
- More complex because needs 2 NN
 - Longer to train
 - Much harder to debug
- Amplifies response distortion issues
 - With no easy way to fix...

Try direct calibration (learn directly R(E_{reco}) with 1 NN)

Direct Calibration

Much better corrected mass distribution



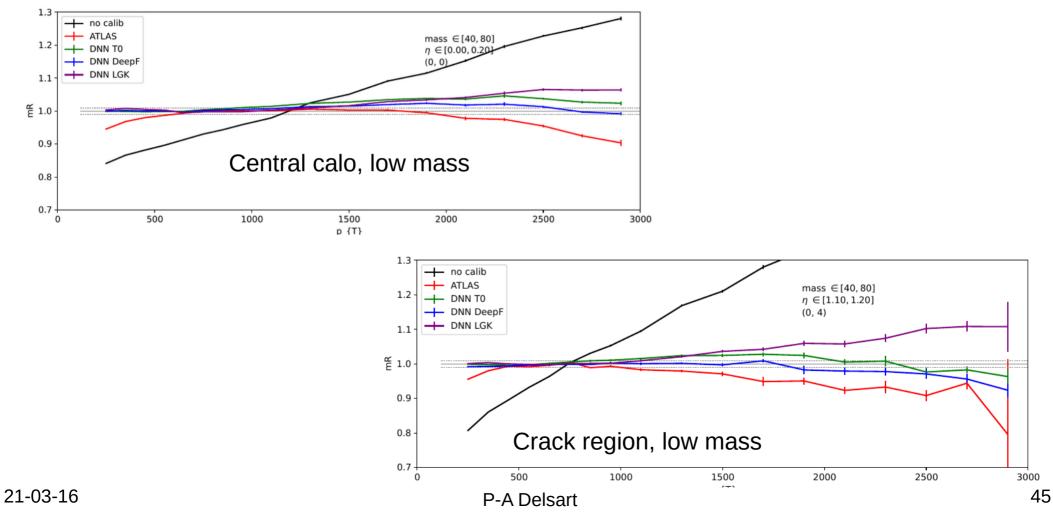


21-03-16

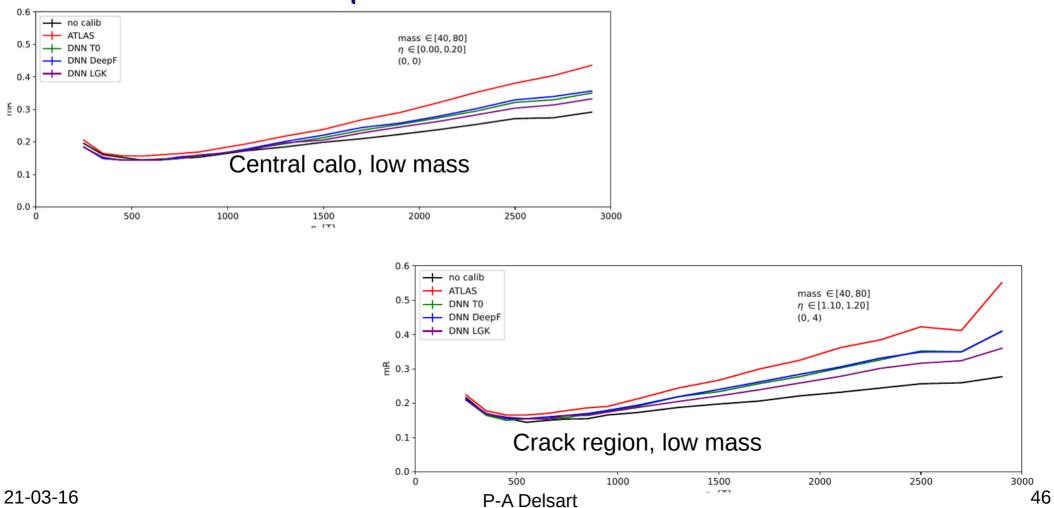
NN training optimizers

- Tested several optimizers, mostly variants of ADAM
 - Rectified-ADAM
 - ADABelief
 - DiffGrad
 - Applying the "Look-ahead" technique
- Goal was to see if they optimize better the loss
 - Nothing clear, but faster convergence than usual SGD/ADAM

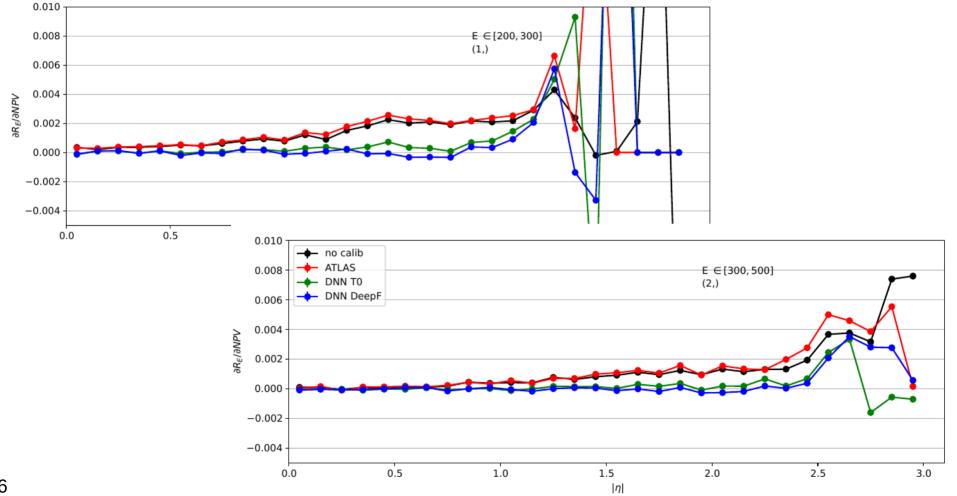
M response vs p_{T}



M resolution vs p_{T}



E response, NPV dependence vs n



21-03-16

47

M response, NPV dependence vs η

