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Hadronic jets E and M 
calibration with DNN
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Jet CalibrationJet Calibration

● Hadronic jets detected by ATLAS need to be calibrated
● Developed a DNN-based method to simultaneously calibrate jet E and mass
● Continuing pioneer work from this PUB Note 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-001/
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Introduction : jet responseIntroduction : jet response

● Particle jets with a given Etrue 
are reconstructed with a Ereco 
distribution

● Usually, discuss jet E 
response
– r=Ereco/Etrue : individual 

response for 1 jet
– R = mode of r distrib, the 

“response” at Etrue ↔ Jet 
Energy Scale (JES) 1
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Introduction : jet responseIntroduction : jet response

● Particle jets with a given Etrue 
are reconstructed with a Ereco 
distribution

● Usually, discuss jet E response
– r=Ereco/Etrue : individual response 

for 1 jet
– R = mode of r distrib, the 

“response” at Etrue

● R depends on Etrue … and other 
parameters : η, m, EMfraction,... 

R
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Introduction : jet calibrationIntroduction : jet calibration

● Goal : find the correction factor C defining Ecalib=C Ereco

Such as :  Rcalib = mode(rcalib) = 1

● C must depend on reconstructed quantities Ereco,ηreco, mreco, 
….

● We want to calibrate E and mass at the same time. So we 
need a function 

C : ℝN→ℝ2 
● Looks like a regression problem...



21-03-16 P-A Delsart 6

Calibration with DNN : difficultiesCalibration with DNN : difficulties

Basic idea : regress RE and Rmass vs (E,mass,η,etc...)

● Need to learn the mode of the targets, not the targets
– Use dedicated loss functions

● R varies strongly vs η because of the detector structure 
(calorimeter boundaries)
– Hard to model sharp variations → use “input annotation”

● ...
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Learning the mode
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How to learn the mode of the responseHow to learn the mode of the response
● Can not use any loss function

– MSE loss ||rpred-rtrue||2  → NN learns the mean

– Bias when r distrib is asymmetric

● Considering 2 approaches
– Leaky Gaussian Kernel (LGK) (introduced here)

● Mode exactly learned by δ(y-ypred) (Dirac function)
● LGK is a surrogate function :
● Fixed parameters α,β ~1e-3 

– Mixture Density Network (MDN)

https://arxiv.org/abs/1910.03773
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MDN lossMDN loss

● Goal is to “predict” the distribution of response given Etrue

● First, assume distrib is gaussian : 
● Thus the NN must learn μ and σ
● Optimal μ and σ are obtain when maximizing the 

likelihood : 
● In practice : 

– have the NN predicts μ and σ 
– choose the log likelihood as the loss 

●
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MDN loss real caseMDN loss real case

● But real distributions are not gaussian !
● We can assume the core of distribution are ~gaussian

– Core is what matters : we want the mode

● Proceed as follows : 
– Start training the NN until reasonable μ and σ are predicted

● Typically, 1 or 2 epochs are enough

– Replace gaussian in previous formula by truncated gaussian at 
Nσ (ex: N=3 or N=1)

– Continue training, possibly reducing N from time to time
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How to learn the mode of the responseHow to learn the mode of the response

● LGK loss

● MDN loss
–  prediction = (μ,σ)
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Learning the η structure
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What do we expect ?What do we expect ?

● E response calculated 
“manually”
– In bins of (E,eta) as in 

standard EtaJES
● Thus ignoring dependencies  

on mass & NPV

– Fit distribution in each of 
these bins → obtain R

– Plot R vs η for a few E bins
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NN prediction for response and resolutionNN prediction for response and resolution

● Learn just E Response with MDN loss
– Thus also predicting E resolution
– Details in following slides

● Try to replicate previous plot
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NN prediction for response and resolutionNN prediction for response and resolution
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NN prediction for response and resolutionNN prediction for response and resolution

● Response shape are roughly correct
But :
● Missing fine structure in eta
● Resolution much higher than expected
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Input AnnotationInput Annotation

● Increase the input by adding “features” 

inputs outputs

η

Annotated layer
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Input AnnotationInput Annotation

● Increase the input by adding “features”

inputs

η
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Gaussian Annotation
● Gaussian centers set on 

detector cracks
Intention : add the “distance to the 
crack” information to the NN
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NN predictions with Input Annotation NN predictions with Input Annotation 
● NN E response predictions 

– Recover the η structure of the response
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NN implementation details
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Input handlingInput handling

● Use 260M simulated large-Radius jets
– do not fit in memory
– Custom solution : 

● Randomly place jets data in  ~10M entries flat TTrees/TFiles  
● streaming inputs from files with uproot

– Other suggestion of workflow ? Use TFRecord + protobuff files ?

● Features and targets normalization
– Linear scaling to ~[-1,1] 
– Although targets are naturally ~1, normalization still important to avoid training 

unstability
● Or use a final activation centred around 1 (like 1+tanh(x))
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Input handlingInput handling

● Use 260M simulated large-Radius jets
– do not fit in memory
– Custom solution : 

● Randomly place jets data in  ~10M entries flat TTrees/TFiles  
● streaming inputs from files with uproot

– Other suggestion of workflow ? Use TFRecord + protobuff files ?

● Features and targets normalization
– Linear scaling to ~[-1,1] 
– Although targets are naturally ~1, normalization still important to avoid training 

unstability
● Or use a final activation centered around 1 (like 1+tanh(x))

15 Input features :
E, mass, η

NPV, μ

EMFrac, EM3Frac, Tile0Frac

NeutralFrac,
EffNTracks (== Σ(p

Ttrack
)2/Σ(p

Ttrack
2)

SumPtTrkFrac

D2, Qw
EffNConst (==Σ(p

T
)2/Σ(p

T
2) ),

GroomMratio (==M
softdrop

/M
ungroomed

)
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NN architecturesNN architectures

● Tested various architectures
– Including various layer sizes
– MDN and/or LGK losses

● Presenting here 2 architectures with MDN loss, 1 with 
LGK loss

● Activation functions 
– Internal layers : mish (a smooth ReLU)
– Last layer : tanh

Framework : 
tensorflow+keras
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NN architecturesNN architectures

Input & annotation

η annotation 
layer

● Triangular shape (labelled T0 in following 
plots)

● ~620K trainable weights
● Fork at the tip allows

– 2 Dedicated sets of weights for RE and for RM

– 2 loss functions, tunable independently

R
E

σ
E

R
M

σ
M
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NN architecturesNN architectures

Input & annotation

η annotation 
layer

● Deep fork shape (labelled DeepF in following plots)
● ~690K trainable weights
● Much deeper fork :  

– 2 independent deep NN to predict RE and RM with a 
common base

● Architecture also tested for the LGK loss (labelled 
LGK)

R
E

σ
E

R
M

σ
M
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NN training convergenceNN training convergence

MDN loss vs njet processed

Steps due to change in the 
gaussian truncation in the 
MDN formula.

End of epoch

Note : 
Can evaluate LGK loss when 
training with MDN :
usualy get slightly lower LGK 
loss than when training with 
LGK

→ MDN seems to perform 
better

Training time : 
1 epoch (260M jets) → O(5min) on Nvidia V100
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NN predictions
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NN predictionsNN predictions

● All 3 tested NN predict similar E&M responses
– No identical though, predictions vary within ~1% for E 

and a 2-3% for M
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NN performancesNN performances

● Comparing NN calibrated responses with ATLAS 
standard JES and JMS calibration
– And uncalibrated responses

● Use simple bins in (E,η), (E,η, NPV) or (pT,m,η) to 
evaluate mode&resolution of response distributions

● Then plot mode&resolution vs variables

Resolution = IQR/response
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E response vs ηE response vs η
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E resolution vs pE resolution vs p
TT

Central calo, low mass

Crack region, low mass
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NN performancesNN performances

● DNN perform very good E and mass calibration
– Better than standard calib in almost all respects

● Energy/mass scale and resolution

– lower pile-up dependence

● All DNN perform similarly
– “DeepF” variant looking a bit better
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NN performances, limitations ?NN performances, limitations ?

● Some differences in mass closure at high E 
● difficult to understand and control

– Not correlated to final loss : very similar in all cases
– Giving more weight to highE/low mass events doesn’t help
– Maybe we just lack statistics at high E/low mass … ?

ATLAS preliminary
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ConclusionsConclusions

● Developed a DNN-based simultaneous calibration of jet E & mass
– 2 noteworthy aspects : learning distrib mode & input annotation to deal with sharp η 

variations

● DNNs perfom globally better than ATLAS standard calib 
– Better closure & resolution
– But details are hard to understand & control

● What does matter ? NN architecture ? Event weights ? Loss function parametrization ?
● Makes it difficult to define reliable & robust calib procedure

● To do :
– Check impact of input distributions and weighting schemes (related to above difficulties ?) 
– Check performances with non QCD-initiated jets : W/Z, H and top jets (on-going : looking 

great !) 
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backup
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DNN MC calibration
Correct for everything
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Numerical InversionNumerical Inversion

A procedure to avoid dependence on input sample 
distribution
● Learn R as function of Etrue with a 1st DNN, call it RDNN1

● Define ENI = RDNN1(Etrue) Etrue

– Numerical inversion of Etrue :  “best guess of Ereco given Etrue”

● Learn R as a function of ENI with a 2nd DNN, call it RDNN2

● Define C(Ereco) = 1/RDNN2(Ereco)
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Numerical Inversion
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Numerical InversionNumerical Inversion

● Procedure used in standard calibration involving learning 2 
Response functions

● Using DNN amplifies intrinsic difficulties related to calibrated quantity 
X as function of X
– Occurs for mass because response varies strongly and has large 

width

● Contrary to standard techniques, no numeric mitigation possible with 
DNN (or very complicated)

● Forget numerical inversion, just regress directly vs reco quantities
– Will have to carefully evaluate potential bias due to input distrib
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Issues with mass calibrationIssues with mass calibration

● Calibrated mass distributions also 
problematic
– High E, low masses

● Double (triple) peaks appearance 
● Known effect due to mathematical 

features of calibrating X as function of 
X

● Amplified by NN and very difficult to 
mitigate 
– mitigation procedure in standard calib 

unapplicable with DNN

Mass response

Mass response
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Issues with Numerical InversionIssues with Numerical Inversion

● More complex because needs 2 NN
– Longer to train
– Much harder to debug

● Amplifies response distortion issues
– With no easy way to fix…

Try direct calibration 

(learn directly R(Ereco) with 1 NN)
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Direct CalibrationDirect Calibration

● Much better corrected mass 
distribution

– no calib
– ATLAS
– DNN

Mass 
response

Mass 
response
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NN training optimizersNN training optimizers

● Tested several optimizers, mostly variants of ADAM
– Rectified-ADAM
– ADABelief
– DiffGrad
– Applying the “Look-ahead” technique

● Goal was to see if they optimize better the loss
– Nothing clear, but faster convergence than usual 

SGD/ADAM

https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/2010.07468
https://arxiv.org/abs/1909.11015
https://arxiv.org/abs/1907.08610
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M response vs pM response vs p
TT

Central calo, low mass

Crack region, low mass
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M resolution vs pM resolution vs p
TT

Central calo, low mass

Crack region, low mass
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E response, NPV dependence vs ηE response, NPV dependence vs η
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M response, NPV dependence vs ηM response, NPV dependence vs η
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