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A few words about the speaker

* CNRS Computer Science Engineer
e 2008 - 2020 Aug : At LIMSI (CNRS INS2I)

* Artificial Vision, robotics : Image processing, CNN
* Natural Language Processing: Language model, RNN & LSTM, Attention model
e Control in Mechanics Energetics : DRL

e Since 2020 Sept : at (CNRS )

* « Computing, Algorithms and Data» team in close collaboration with the Particle Physics
team (ATLAS)

* Expert en calcul scientifique - Machine Learning and Deep Learning



The HL-LHC computing challenge

* High-Luminosity LHC (HL-LHC): 3000 fb~? of data (x10 vs LHC); start in 2027

* Larger dataset & more complex events => steep increase in computing resources needed

0(105) hits per event

* Assuming a flat budget => computing hardware will not be able to provide this increase

* Physics reach during HL-LHC will be limited by affordable software and computing and by how
efficiently these resources can be used => need to improve the algorithms
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Graph Neural Networks (GNNs): A promising
ML solution

* ExaTkrx Project: breakthrough in GNN-based algorithm for track
pattern recognition
 S. Farrell et al. (2018), arXiv:1810.06111 [hep-ex] (NeurlPS 2019)
* Great promising performance on the TrackML dataset

* Proof of principle: Not a real-world experiment
* Only central part of the detector, split into 16 sections
* Graph construction algorithm only works for trivial detector geometries

* Since then, significant effort in the development of algorithms based on GNNs

* X.lJu,S. Farrell, P. Calafiura, D. Murnane, Prabhat, L. Gray, T. Klijnsma, K. Pedro, G. Cerati, J. Kowalkowski et al. (2020),
arXiv:2003.11603 [physics.ins-det]

* N. Choma, D. Murnane, X. Ju, P. Calafiura, S. Conlon, S. Farrell, Prabhat, G. Cerati, L. Gray, T. Klijnsma et al. (2020), arXiv:2007.00149
[physics.ins-det]

* X.Ju, D. Murnane, P. Calafiura, N. Choma, S. Conlon, S. Farrell, Y. Xu, M. Spiropulu et al. (March 2021), arXiv:2103.06995 [hep-ex]



GNN for track pattern recognition
* Why GNN?

* Graph can represent sparse data
* Message passing convolution generalises CNN from flat to arbitrary geometry

e Can learn node (i.e. hit / spacepoint) features and embeddings, as well as
edge (i.e. relational) features and embeddings

=> Very suitable for track pattern recognition
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Towards a realistic track reconstruction
algorithm

e We are members of the ATLAS collaboration and we are comitted to ITk sotfware

* New effort at to implement a realistic GNN-based algorithm that can be deployed in an HL-
LHC experiment:

* C.Biscarat, S. Caillou, C. Rougier, J. Stark, and J. Zahreddine (March 2021), arXiv:2103.00916 [physics.ins-det]
* Novel algorithm for graph construction that can handle any complex geometry of a realistic detector
* Methods for memory management that allow GNN training on the full detector

* Integration into the ACTS framework (A Common Tracking Software)
* Facilitate their use with detailed simulation studies of HL-LHC detector
* Direct comparison with other tracking algorithms (e.g. Kalman Filter)



https://arxiv.org/abs/2103.00916

Simulated data

1. Generation of 1000 tt events in proton-proton collisions
e /s=14TeV,u = 200 (HL-LHC conditions), events generated using PYTHIAS

2. Fast track simulation inside the ACTS framework
* Response of the Generic Detector defined in ACTS

Inspired by initial layouts for the ITk detector (future ATLAS tracker)
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Layers (18728 silicon modules)
parallel or perpendicular to the
beam line

When a charged particle
traverses a module, it leaves a
space-point hit



Graph representation of data
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Data from a tracking detector can be represented using a graph

A node represents a hit

* An edge between two nodes = nodes could potentially represent two successive hits on a track
* An edge can be true (segment of a track) or fake (not a segment of a track)

* Our goal: identify the true edges among all the edges

* Fully connected graph => 0(10'?) edges

— Key feature of graph construction: initial choice of the edges (increasing the purity of true edges)
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Graph representation of data
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Data from a tracking detector can be represented using a graph

A node represents a hit

* An edge between two nodes = nodes could potentially represent two successive hits on a track
* An edge can be true (segment of a track) or fake (not a segment of a track)

* Our goal: identify the true edges among all the edges

* Fully connected graph => 0(10'?) edges

= Key feature of graph construction: initial choice of the edges (increasing the purity of true edges)
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Graph representation of data

— New data-driven graph construction algorithm
—> Basic idea: build graphs starting from a list of possible connections

Done once:

e Observation of 1k simulated events

*  Module map: list of possible connections from one silicon module
to another

Graph construction:

* Connecting the hits if the modules connection is in the module
map = 0(107) edges

* Cuts are applied on geometric parameters => 0(10°) edges
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GNN training and inference

Training dataset

1 event => 1 input graph + 1 target graph

Nodes features: (1, ¢, z)
Edges features: (An, Ag, Ar,Az)
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Memory considerations

* Consider an L-layer GCN with hidden state size of H running on an N-edges graph

=> Automatic differentiation + Storing the intermediate hidden states requires O(LNH) =
0(102%2GB) >> Any GPU memory on the market

* Use of Large Model Support in Tensor Flow (IBM TFLMS)
=> Tensors can be temporarily swapped to the host when they are not immediately needed

* Hardware platform (thanks to CC-IN2P3):

* GPUs: 2 x Nvidia Quadro RTX 8000 GPUs with 48 GB of memory each
* Host: two AMD EPYC 7262 processors with 8 cores each and with 1024 GB of memory



GNN prediction on the full detector

Uniform performance for |n| < 4 Uniform performance in p;
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Track reconstruction results

* Next step: build tracks starting from the graph and the edge scores
* Baseline studies with a very naive graph walk-through algorithm

Track reconstruction efficiency
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Track reconstruction efficiency vs. pr

Perfect matching: all hits from a given
particle are on a reconstructed track, and

only these hits

: at least 50% of the hits on

a track come from the same particle



Conclusion and outlook

e Our work until now:

* GNN-based algorithm for track pattern recognition at the HL-LHC
* Novel algorithm for graph construction
* Use of advanced methods for memory management (for GNN training)

» Scale to the size and to the complexity of any realistic detector
* Promising results for track reconstruction on the full detector

e Starting now:
 Full collaboration with ACTS and ATLAS for integration with the latest version of ITk
* Complete and optimised solution

* GNN: optimised architectures and hyperparameters
* High performance track reconstruction algorithm based on graph theory algorithm

* Performance comparaison studies with other tracking algorithms



