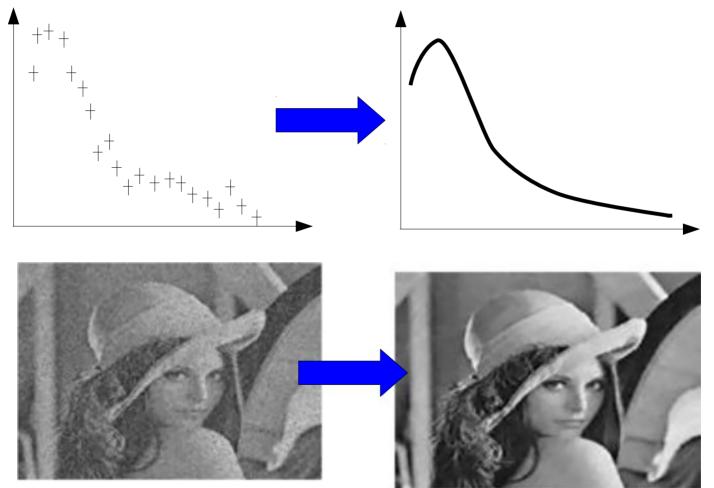
Fitting a spectrum using ML

Samuel Calvet

March 16th 2021

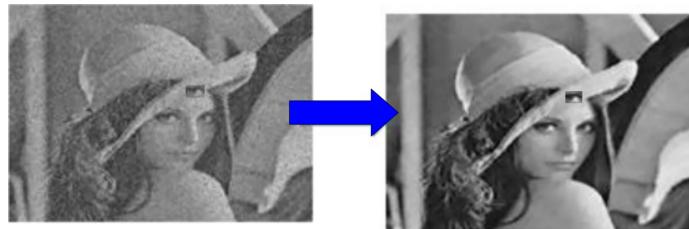
Changing the perspective...

• Fitting a spectrum can also be seen as **removing the poisson noise**

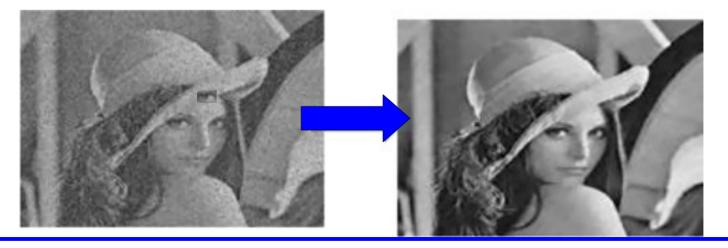


Changing the perspective...

 Wanting also the NN to produce realistic bgd fit (ie signal is seen as "noise" and is subtracted)



"signal" not subtracted



"signal" subtracted producing realistic "bgd" shape

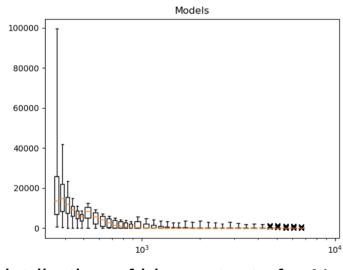
The idea

The concept would be naively:

N-bins data histogram \rightarrow \rightarrow N-bins "fitted" histogram ΝN $(\sim truth)$ (truth + Poisson noise) E N inputs N outputs

Training/test samples

- Truth PDF:
 - $PDF(x) = \sum_{i} Erf(x, \sigma_i, \mu_i) * exp(-x_i^{\rho}/\alpha_i)$
 - Number of backgrounds can vary, aim to have N_{bad} =5
 - 1e5 ±80% events per histogram
 - O(1e6) shapes



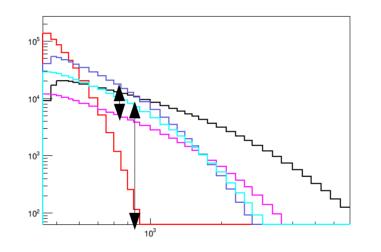
Distribution of bin contents for N=5



Large variety of shapes

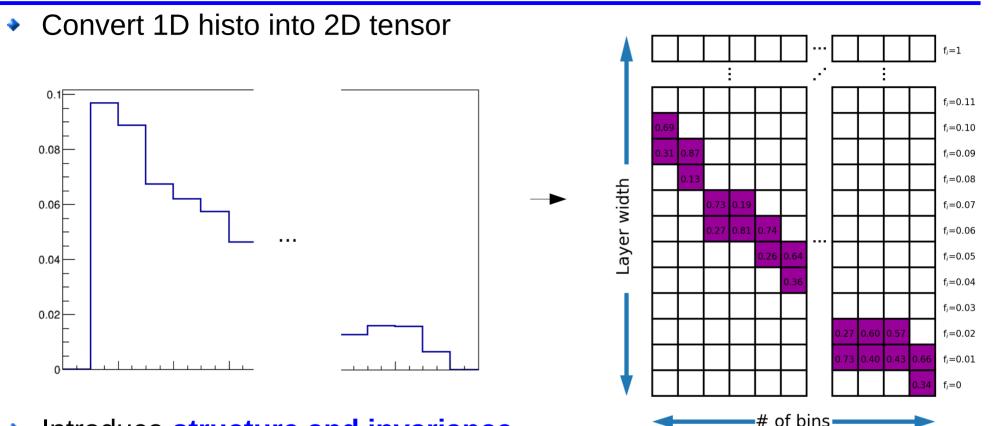
Issue

- Large variety of shape \rightarrow large variation in order of magnitude
 - Activation functions can not work properly if all the order of magnitude of the input are significant
 - \rightarrow Very difficult to train



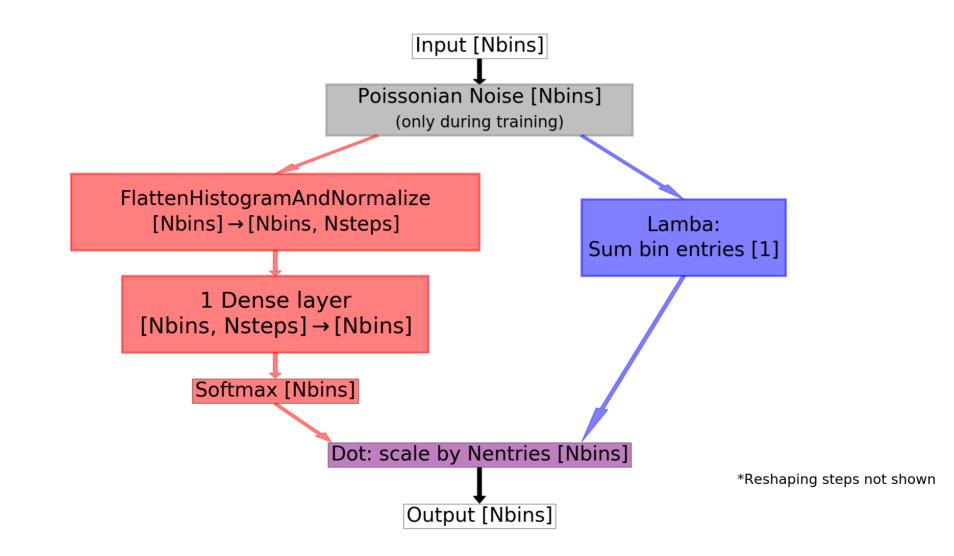
- Is there a way to get rid of this ?
 - Yes ! 'Pixelize' the histogram!

FlattenHistogramAndNormalize layer



Introduce structure and invariance

Only an handful of elements activated per histogram
→ simplify the convergence of the following layers



Training of NN

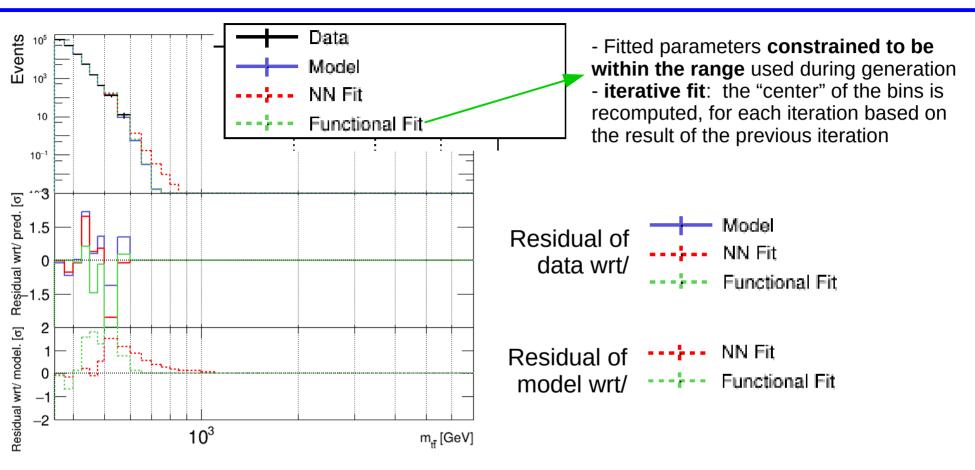
- 1.024e6 models, N_{bgd}=5
- Batch size: 128
- FlattenHistogramAndNormalize width: 101
- Loss: AtlasSignificanceNormalized (ASN)
 - Normalize Y^{true} to Y^{pred} then compute: mean(Y^{true} * log(Y^{true} / Y^{pred}) - (Y^{true} - Y^{pred}))
 - From Atlas recommendation https://cds.cern.ch/record/2643488/?

In the case of $n \ge b$, this formula corresponds to equation 25 in [1]. In the case of vanishing uncertainty ($\sigma = 0$) this formula reduces to:

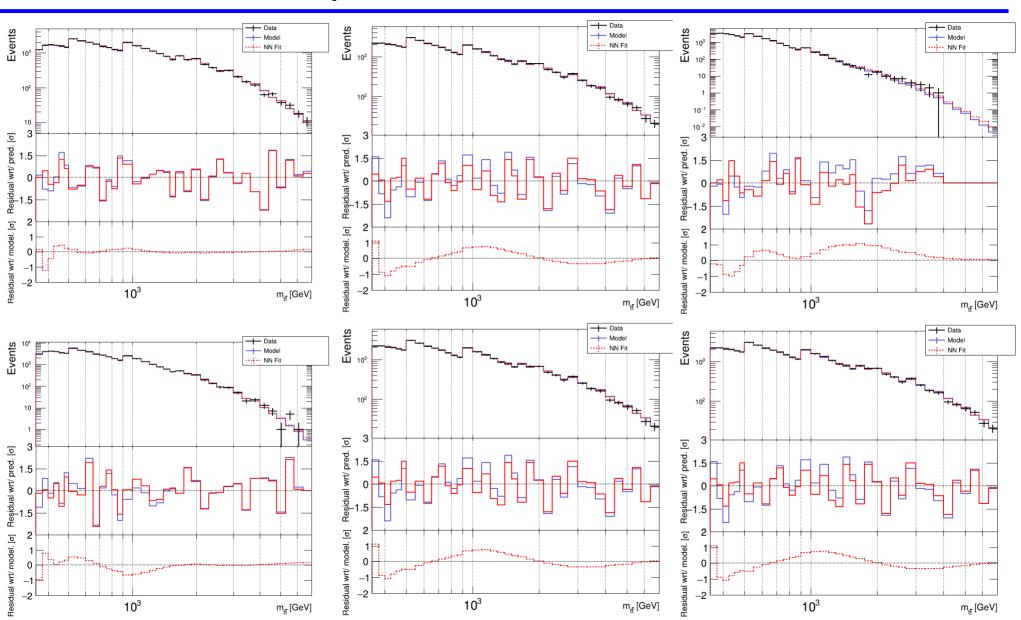
$$Z = \begin{cases} +\sqrt{2\left(n\ln\left[\frac{n}{b}\right] - (n-b)\right)} & \text{if } n \ge b \\ -\sqrt{2\left(n\ln\left[\frac{n}{b}\right] - (n-b)\right)} & \text{if } n < b. \end{cases}$$
(2)

- Early stopping on val_loss, min_delta=0, patience=3
- Optimizer: RMSprop (learning rate: 1e-6)
- Initialization of weights: random uniform, bias set to 0

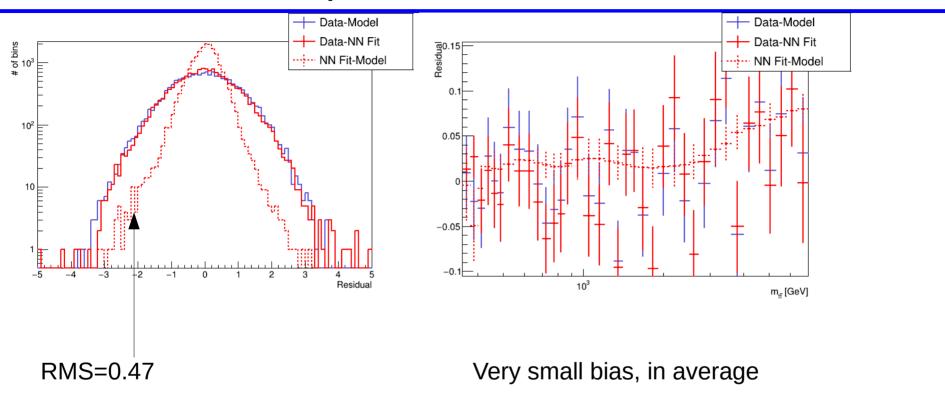
Results



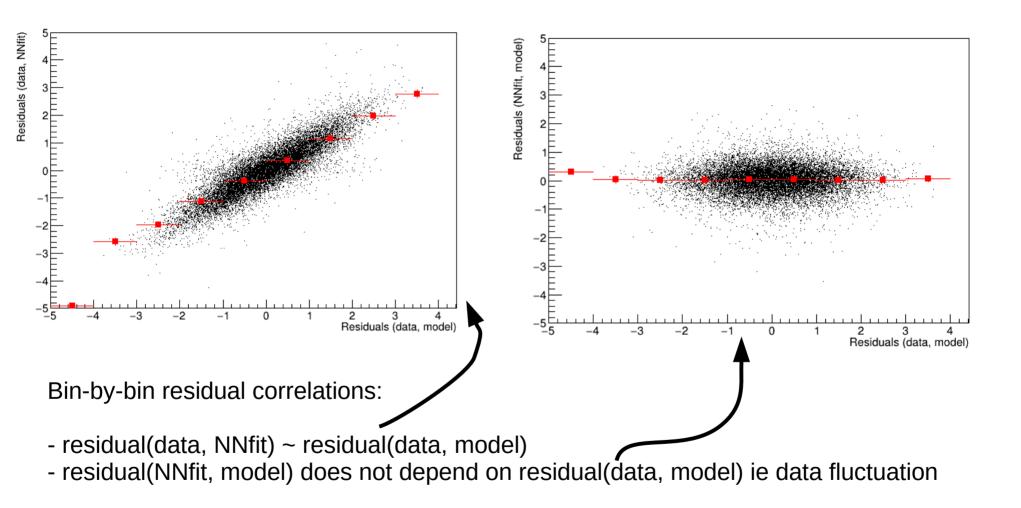
Result: test sample (6 first models as an illustration)



Result: test sample



Result: test sample

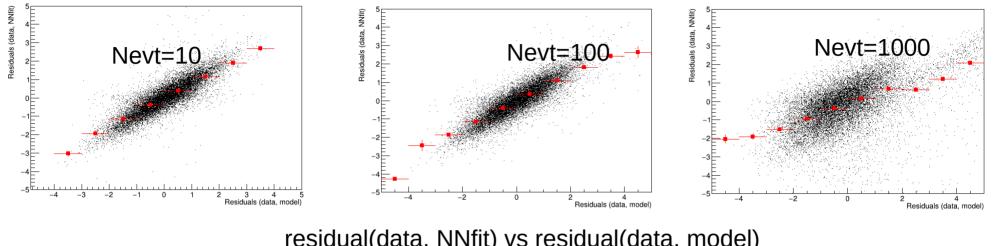


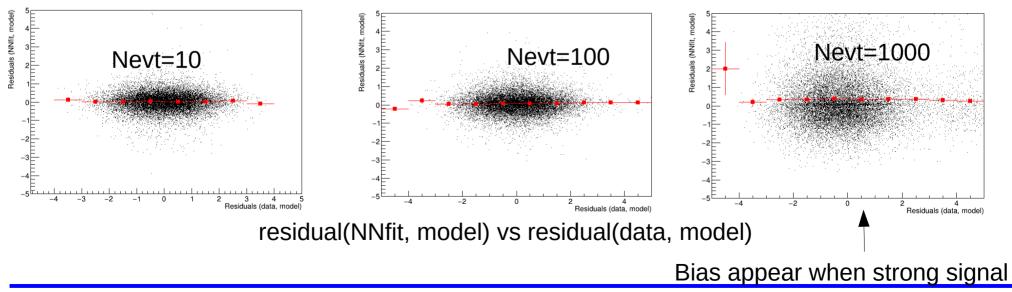
Let's now inject signal in the pseudo-data

Signal=Nevt*Gaus(1TeV, 10%)

Nevt=10, 1e2, 1e3, ...

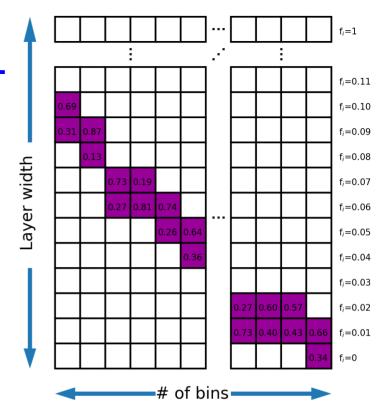
Mass=1TeV, width=10%, Nevt=...





Conclusion

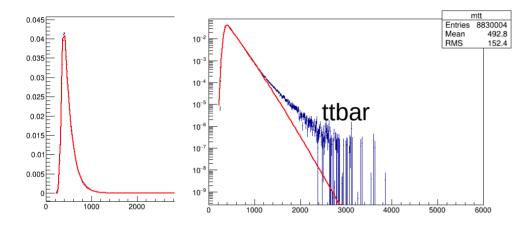
- Defined a new activation layer
 - Convert 1-D histogram into 2D 'image'
 - Can also produce several 'images' to reflect the stat uncertainty
 - Simplify a lot the convergence of the NN
 - Only an handful of nodes are activated for a given histogram
- Promising performances on tested spectra
 - Just adding a simple and small dense layer ! (much more tests in backup and on my disks...)

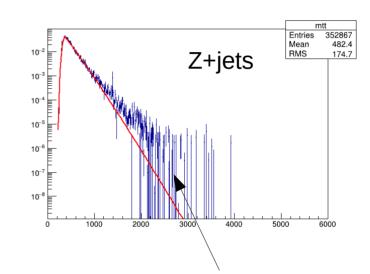


Backup

Training/test samples

 Use MC samples [ttbar, W, Z, VV, single-t, dijet] (thanks to Souad!) to know typical values of functional shape:

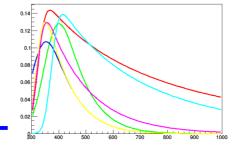




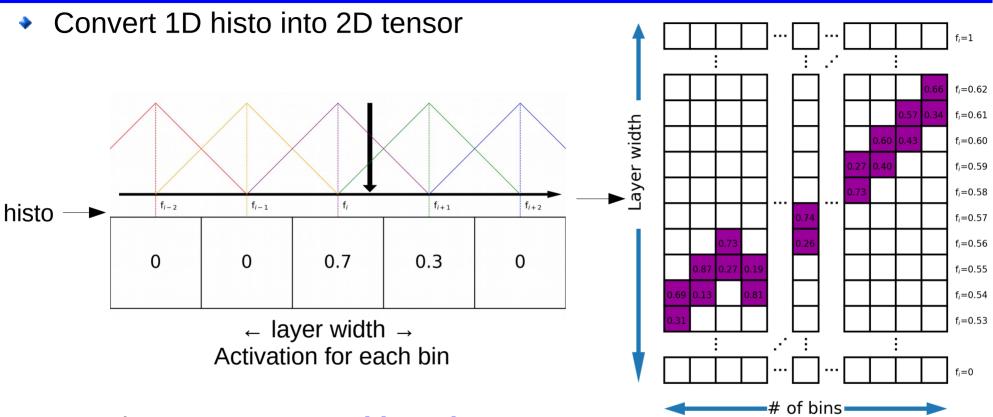
• PDF(x) = Erf(σ , μ) * exp(- x^p/ α)

Not perfect in the tail... but hopefully it will be fine (see next slides)

- Measured" intervals → Used intervals
 - ρ ∈ [0.68, 1.43] → [0.5, 1.5]
 - $\alpha \in [36, 275] \rightarrow [25, 200]$
 - $\sigma \in [16.7, 23.3] \rightarrow [10, 30]$
 - μ ∈ [325, 349] → [325, 375]



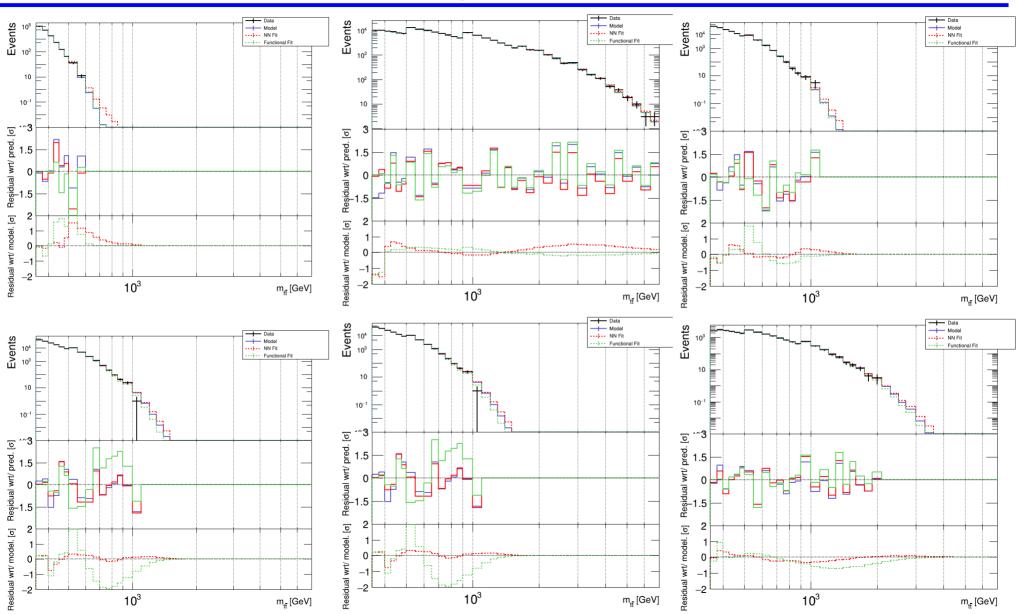
FlattenHistogramAndNormalize layer



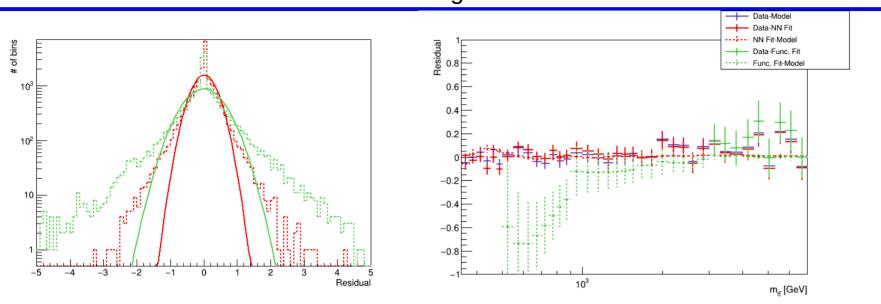
Introduce structure and invariance

- Works properly even if its input vary by several order of magnitude
- Only an handful of elements activated → simplify the convergence of the following layers

Result: test sample, N_{bgd}=1 (6 first models as an illustration)



Result: test sample, N_{bgd}=1

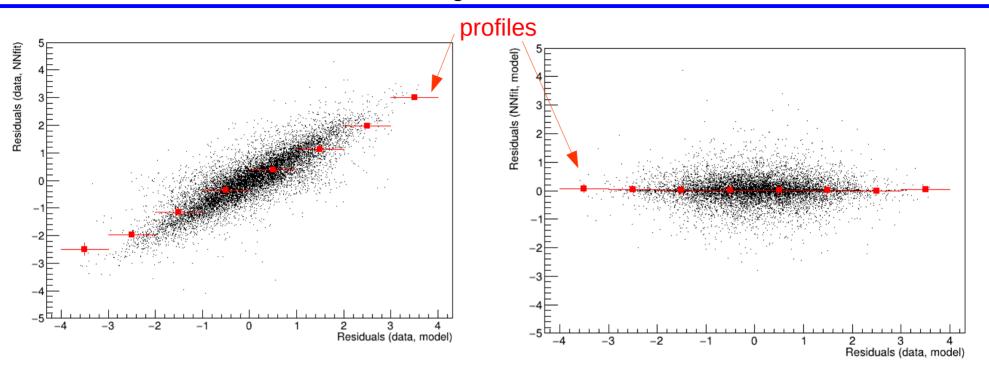


NNfit performs better than a functional fit

Few remarks:

- func. fit would do better if it was allowed to use a wider range of parameters
- func. fit performance is very sensitive to binning (variable size bins!).

Result: test sample, N_{bgd} =1



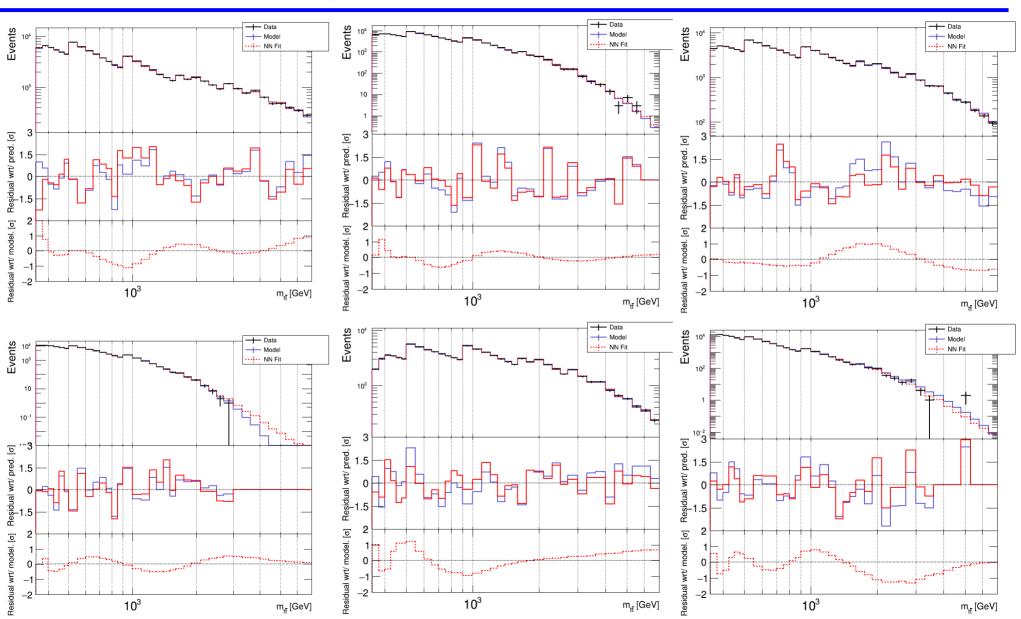
Bin-by-bin residual correlations:

- residual(data, Nnfit) ~ residual(data, model)
- residual(NNfit, model) does not depend on residual(data, model) ie real data fluctuation

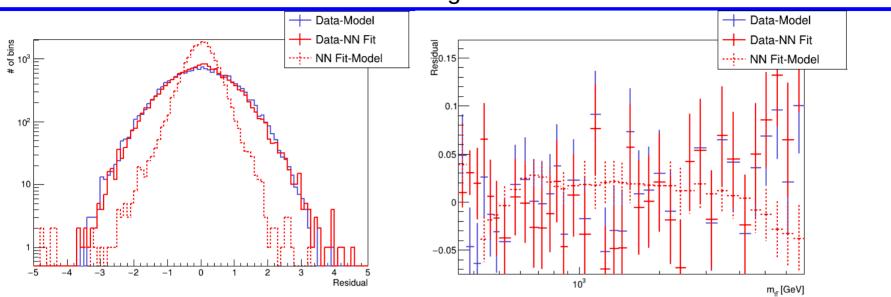
What if the test sample has $N_{bgd} = 7$?

Is the NN able to generalize ?

Result: test sample, N=7 (6 first models as an illustration)

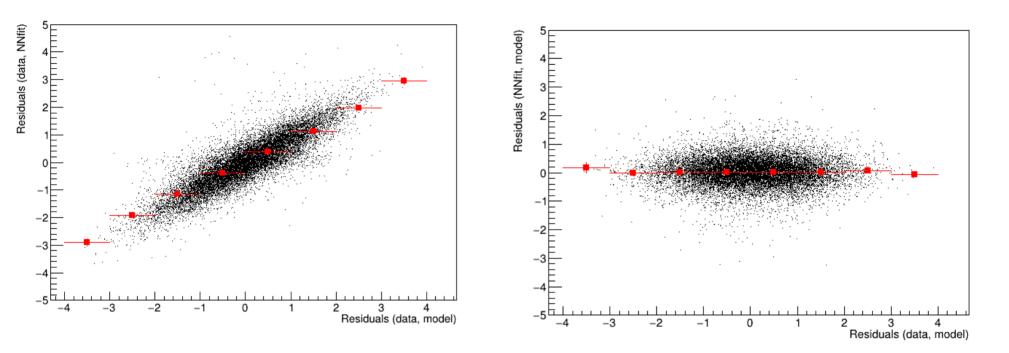


Result: test sample, N_{bgd} =7



RMS=0.49 (was 0.47/0.42 for N_{bgd} =5/1) Very small bias

Result: test sample, N_{bgd}=7



Bin-by-bin residual correlations:

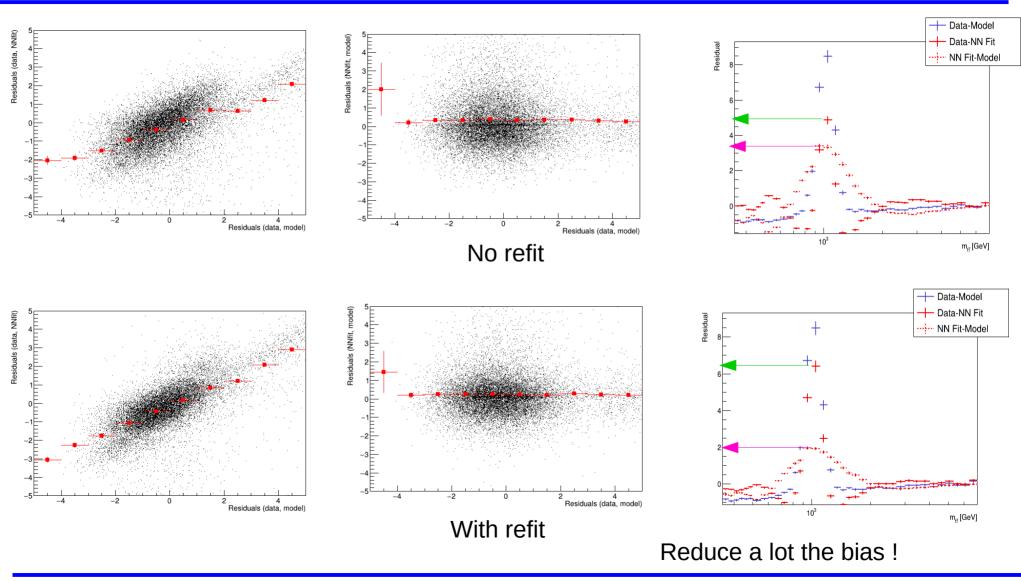
- residual(data, NNfit) ~ residual(data, model)
- residual(NNfit, model) does not depend on residual(data, model) ie data fluctuation

Same results as before!

Re-fit the data

- Results are not bad for weak signal but far to be perfect when there the signal is strong
- What if we refit the data, but correcting the most discrepant bins ?
 - Apply NN on data once \rightarrow bgd histo
 - MaxSignif = maximum bin significance(data, bgd) this bin is added to BinToBeCorrected list
 - While MaxSignif>1:
 - data' = data
 - for i in BinToBeCorrected: data'[i]= bgd[i]
 - Apply NN on data' \rightarrow bgd histo

Mass=1TeV, width=10%, Nevt=1000



Mass=1TeV, width=10%, Nevt=100

