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The Phase-II Upgrade of the LHC
Upgrade of the ATLAS experiment

• The High Luminosity LHC (HL-LHC) is a important milestone for particle physics
• Increase the luminosity to study rare processes
• Increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing (BC)

• The detectors will be upgraded to cope with the high collision rate at the HL-LHC
• In particular the ATLAS calorimeter readout electronics will be completely replaced
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Liquid Argon Calorimeter
Energy reconstruction in the LAr calorimeter

• Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically
interacting particles

• Consisting of≈ 180 000 calorimeter cells
• Passing particles ionize the material

• Bipolar pulse shape with total length of up to 750 ns (30 BCs)
• Pulse is sampled and digitized at 40MHz

• Energy reconstruction is done real-time and used in triggering decision
• Using the digitized samples from the pulse
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Energy Reconstruction
Energy reconstruction in the LAr calorimeter

• Current energy reconstruction uses optimal filtering algorithm with maximum finder (OFMax)
• Using five samples around pulse shape peak
• Assuming perfect pulse shape

• High pileup leads to higher rate of overlapping pulse shapes
• Distorted bipolar shape→ significantly decreased performance of OFMax

• Energy is computed real-time at 40MHz
• Need to use electronic boards based on
FPGAs

• Phase-II electronics with high-end FPGAs
• Increased computing capacity
• Improved online energy reconstruction using
machine learning based methods

• Constraints from running on FPGAs
• Latency, frequency and occupancy
• See next presentation by Etienne Fortin
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LSTM Network
Using a many-to-one network for energy reconstruction

• Recurrent Neural Networks (RNNs) are
designed to process time series data

• Long Short-Term Memory (LSTM) network for
efficiently handling past information

• LSTM consists of neural network layers that
process the new time input combined with
past processed state

• Use digitized samples as inputs for the
recurrent network

• Full sequence split into overlapping
subsequences with a sliding window

• One energy prediction per subsequence
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LSTM Network Without State Resets
Using a many-to-many network for continuous energy reconstruction

• Use the LSTM cell to process all digitized
samples in one continuous chain instead of a
sliding window

• Apply the same LSTM operation for each
bunchcrossing combining the past state and
new ADC value

• Use each intermediate state for energy
reconstruction

• No state resets (stateful in Keras)
• Reduces the computational requirements
when each prediction requires only one
iteration of the cell
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LSTM Network Optimization
Find the smallest well performing network, example for sliding window LSTM

• Use standard deviation and 98% range to compare energy resolution
• Non-gaussian distribution of the energy resolution

• Optimization of the energy resolution while keeping the network size under control
• Vary the network parameters: internal dimension (units), sliding window size (timesteps)
• Network trained with simulated data of a single LAr calorimeter cell using the AREUS software
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LSTM Performance
Energy resolution in comparison to OFMax

• Both LSTM architectures perform better than OFMax
• LSTM with sliding window is more resilient to outliers
and focuses on the peak

• Stateful LSTM performs slightly better overall with
better correction of long range effects but has a wavy
feature
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LSTM Performance
Resolution as a function of gap to previous energy deposit in BCs

• Clear performance decrease with OFMax at low gap
• LSTM with sliding window showing slight underestimation of energy at low gap and
overestimates at around a gap of 20 BC

• Increasing the amount of timesteps removes both effects
• Single cell LSTM handles long range effects better
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Conclusion
Energy reconstruction using recurrent neural networks

• Energy reconstruction with LSTM overperforms legacy
algorithms in Phase-II conditions

• Better energy resolution overall
• Better recovery of energy resolution with overlapping
signals

• Strict resource and latency constraints limit the size of
the networks

• Energy resolution optimized while keeping the network
size small

• FPGA implementation of LSTM presented next by
Etienne Fortin

• Next steps:
• Using other RNN architectures (Vanilla RNN and GRU)
• Quantization aware training using QKeras (better adapted
to FPGA implementation)

• Continue studies of the robustness against HL-LHC
conditions (bunch train structure, varying instantaneous
luminosity, … )
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