What is the price of abandoning
dark matter?

Cosmological constraints on dark matter properties

David Spergel Feb 9, 2021



Cosmological measurements of dark matter

CMB observations imply that there must be a dark matter component with an equation of
state, w=0, and a sound speed, cs=0.

 Measurements of CMB lensing show that there is a component that the Poisson equation
is a good description on the Mpc to 100 Mpc scales

» Galaxy-galaxy lensing and CMB-galaxy lensing shows that the lensing profiles around
clusters are the predicted NFW profiles

* Measurements of large-scale velocity fields show that there is a component that behaves
like cold dark matter on the Mpc to 100 Mpc scales

* On the kpc scale, MOND fails to fit the diversity of dwarf galaxies or the properties of
clusters. CDM is consistent with the observations.
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Did you know?
If it looks like a duck, sounds like
a duck, and walks like a duck,
it's not a horse.

1f

(it.look == Look.duck &&
it.swimStyle == SwimStyle.duck &&
it.quackStyle == QuackStyle.duck) {

return it is Duck
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Baryon-Transfer Function

—— Data + analytical model

Without a component that is behaving like cold dark matter
on cosmological scales, it is very difficult to connect the
CMB to large-scale structure

Pardo & Spergel (2020)



Green’s Function for a Cosmology
without a cold dark matter component
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Linear Theory Observations (CMB at z = 1100 and P(k) at
z = 0.3) require that there is a component that behaves
is described by GR linear perturbation theory and has
the same sound speed and equation of state as CDM




RMOND + CMB

RMOND posits a field that on cosmological scales has a sound speed and
equation of state consistent with CDM. The field has a very complex non-
renormalizable Lagrangian but at the end of the day is another non-interacting

field:

V=g Kg .
S :/d4 e [R - —F“”F +2(2 — Kg)J*V .6

5:3H(w5—H)+(1+w)< '

~(2—-Kp)Y —F(¥,Q) — MA*A, + 1)| + Sm[g]
(10)
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but with non-standard pressure contrast:

Skordis and Zlosnik 2007.00082

H=c§d5—8 5‘12 V?[KgE + (2 — K3) X] . .
a Does this anisotropic pressure change the CMB spectrum?
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As shown, these curves actually
don’t fit the Planck data
Probably due to anisotropic
pressure

There likely are fits, but need to
check whether they are
consistent with BBN, etc.
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Mapping Universe’s Mass




Mapping the Distribution of Mass
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ACT 2013 (T only)
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Galaxy-galaxy lensing
DES yr1 data (Prat et al. 2018)
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Large-scale velocity fields

CMB-galaxy cross-correlations of KSZ effect

Kinetic Sunyaev-Zel’dovich Effect




In Newtonian theory on the 10-100 Mpc scale, we can compute the expected
gravitational acceleration from the matter correlation function, which scales

roughly as (R/Rg)~1%:
50, H3Ry®
~ T 4R08
While MOND predicts

/r 2 10.9
1/2 _ 0 5O Hy Ry

AMOND = (aNaO) 2R0-4
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Not a horse....

MOND failures in clusters

MOND apologists have shown that a 11 eV sterile neutrino could
fit the cluster profiles with MOND (see e.g., Angus et al. 2013)

11 eV sterile neutrinos are a form of dark matter... hot dark
matter
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Pointecouteau & Silk 2004




On galactic scales, data favors GR over MOND
Lisanti, Moschella, Outmezguine, Slone 1812.08169

comparison of vertical acceleration to radial acceleration favors GR by 2 sigma

Upcoming GAIA data should improve the significance of this test




Wasn'’t a horse 30 years ago.....
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ABSTRACT

We derive a virial theorem and an analog for King’s formula in modified Newtonian dynamics (MOND;
Milgrom 1983) and use these to estimate the mass-to-light ratios (M/Ls) in MOND of the dwarf spheroidal
galaxies in the Local Group. We find that the low-velocity dispersion observed in the Fornax dwarf galaxy
implies low values for its M/L in MOND: 0.3-1. In particular the derived value in the core of Fornax (0.3) is
much lower than expected for a normal old stellar population. Conversely, the velocity-dispersion measure-
ments in Draco and Ursa Minor appear to still require dark matter in MOND. We show that M/L must vary
between the dwarf spheroidals around the Galaxy by a factor of order at least 20, even in MOND.

Subject headings: dark matter — galaxies: elliptical and lenticular, cD — galaxies: kinematics and dynamics —
gravitation
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Still not a horse.....

MOND failures in dwarf galaxies
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Sorry, Moti—- these aren’t
all being tidally disrupted!
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Conclusions

Alternative theories can fit CMB observations,
lensing observations, large-scale flow
measurements, and cluster observations as
long as the model behaves like linear GR on the
kpc to Gpc scale and has a sound speed and
equation of state close to 0.




