Contents

- Group 2 areas
- Papers
- Tools and Physics Section Order
- Physics Sections
- Inter-correlations
- Conclusions

Group 2

- Tools
 - Dalitz
 - MVA
 - Tagging

- Physics
 - Alpha
 - Beta
 - Gamma
 - Sides
 - B -> Charm
 - B -> Charmless
 - B -> leptonic
 - B -> Radiative

Papers

Section	Babar papers	Belle papers	BFLB Pages
MVA	0	0	10
Dalitz Methods	(17)	(22)	20
Tagging	0?	1?	30
α/φ2		12	15
β/φ1	>11	>?	24-30
γ/φ3	25	25	25
Radiative	28	27	30
Charmless	20	20	20
Leptonic			
B -> charm			
Sides			
31st October 2009	Fe	ergus Wilson Group 2	3

Tools – New sections

- 1) PID and Reconstruction efficiency and systematics methodology.
- 2) Flavor tagging
- 3) Vertexing
- 4) Time-dependent analyses
- 5) B-reco
- 6) MV/Optimization
- 7) ML fits
- 8) Dalitz
- 9) Angular analysis
- 10) Blind analysis

Re-Order Section

11 B-physics	2			
11.1 Vub and Vcb 158				
11.2 Vtd and Vts 180	3			
11.3 φ1				
11.4 φ2 218	4			
11.5 φ3 229				
11.6 Radiative and electroweak penguin decays 251				
11.7 Leptonic decays 268				
11.8 Hadronic B to charm decays 294				
11.9 Charmless B decays 318				
11.10 Baryonic B decays 340				
11.11 Mixing, CPT violation, and EPR correlations . 357				
11.12 Quarkonium physics				
	11.1 Vub and Vcb			

- 1. Move 11.8, 11.9, 11.11 (mixing and lifetimes, EPR)
- 2. after 11.2
- 3. Move 11.11 (CPT) after 11.5
- 4. In tools, add Angular Analysis after Dalitz

MVA

- ◆Formalism of fitting distributions with resolution models conditional on per---event errors.
- ◆Simultaneous fitting techniques (control vs. signal, and splitting in bins of e.g. tagCat).
- ◆Techniques involved in multi---dimensional model use (including likelihood ratio plots)
- Subtraction of background events in the likelihood and calculation of errors for those cases
- ◆Something on RooFit
- **◆**SPLots
- ◆Parallelization and other computational techniques for 'exact' optimizations.

Dalitz

- Introductory part
 - Concept of a DP, the general ideas behind DP fits.
 - Physics motivations behind DP analyses: searches for new states, measuring resonance properties, CP violation, B and D mixing, resolving ambiguities.
- Formalisms isobar, K matrix.
 - Lineshapes, angular terms, barrier factors.
 - Different ways of parameterising the complex coefficients.
- Extensions:
 - Square Dalitz plot (various forms).
 - Time-dependence.
 - Non-scalar particles in the final state.
- Effects of efficiency, backgrounds, self cross feed, resolution.
 - Technical issues
 Binned vs unbinned fits, approaches for normalisation, adaptive binning, nonparametric backgrounds, local minima.

Tagging

- Introduction to tagging
 - * definitions
 - * physics sources of tagging information
 - * multivariate methods used
 - * things we tried, what worked, what didn't?
- - Flavor tagging algorithms
 - * BaBar and Belle algorithms
 - * only most recent algorithms
 - * categories etc
- Measuring flavor tagging performance
 - * history of tagging performance in Belle and BaBar
- - Systematic effects
 - * tag side interference

Section subdivision – beta/ ϕ 1

- 1) Intro/overview
- 2) ccbars (J/psi K⁰, ...)
- 3) ccbard (J/psi ₩⁰, DDbar)
- 4) cubard (D⁰h⁰)
- 5) Charmless qqbars
 - a) Q2b
 - b) 3-body, non-Dalitz
 - c) 3-body, Dalitz
- 6) Review of methods to break discrete ambiguity (J/psiK*, 3K, ...).
- 7) sin(\(\mathbb{W} \mathbb{W} \mathbb{W} \mathbb{W} \mathbb{W})
- 8) Future prospects (at LHCB and Super B factories)
- 9) Summary

For each subsection

- CKM context for measurement. How it fits into bigger picture. (0.5 1.0 p)
- Experimental methods (1 2 p)
- Results including experimental limitations. (0.5 p)
- Interpretation including theoretical limitations. (0.5 - 1.0 p)
- Future prospects (here or all together at the end?) (0.5 p)

Typical subsection page count: 3 - 5 p.

Approximate expected # pages needed for whole section: 24 - 40 p

Alpha/φ2

- ◆Introduction (1p)
- ◆Isospin analyses (1p)
- $Arr B \rightarrow \pi\pi (3p)$
 - ◆(includes description of Kπ) intersection with charmless decays
- \bullet B \rightarrow pp (3p)
 - Angular analyses
- $\Rightarrow B \rightarrow \rho \pi (3p)$
- \bullet B \rightarrow a1 π (2p)
- ◆Conclusion (1p)

Gamma/ф3

- •Many papers related to γ (variety of methods and channels)
- Overview on approaches to measure γ
- •Focus on GLW, ADS and Dalitz methods on B+ →D(*)K(*)+ decays
 - •GLW B-→D0K-, B-→D*0K-, B-→D0K*-
 - •ADS B-→D0K-, B-→D*0K-, B-→D0K*-
 - •Dalitz/GGSZ B-→D0K-, B-→D*0K-, B-→D0K*-
- •B0→D0K*0 modes (ADS,Dalitz) do not bring much information at B factories
 - Will include but short
- •sin(2β+γ) measurements (full and partial reco) will be included
 - Shorter than subsections for GLW+ADS+Dalitz with charged modes
- •Too early yet to consider "Model Independent" Dalitz measurement
 - •Belle is working on it, BaBar did not consider it (so far)
- Combination of results (from main methods)

Sections

B->Radiative/EW

Subsubsection Extraction of Vtd/Vts?

```
Section Radiative & Electroweak Penguin Decays (30 pages)
                                                              Subsection Time-dependent CP violation (3 pages)
 Subsection Theory (4 pages)
                                                                 Subsubsection B->Kspi0gamma, B->Ksetagamma
    Subsubsection Heavy Quark OPE
                                                                 Subsubsection B->Ksrhogamma, B->Ksphigamma
    Subsubsection Form Factors (sum rules & SCET)
                                                                 Subsubsection B->rhogamma
    Subsubsection New Physics
 Subsection Inclusive b->sgamma (6 pages)
                                                               Subsection b->sll (6 pages)
    Subsubsection Fully inclusive (+ lepton-tagged)
                                                                 Subsubsection B->K(*)II (BF, A<sub>CP</sub>, A<sub>I</sub>, R<sub>I</sub>)
    Subsubsection BRECO tagged
                                                                 Subsubsection B->K*II angular analysis
    Subsubsection Sum of exclusives
                                                                 Subsubsection b->sll sum of exclusives
    Subsubsection Direct CP and A
                                                              Subsection b->svv (2 pages)?
    Subsubsection Spectral shape, moments, extrapolation
    Subsubsection World averages
                                                                 Subsubsection B->K(*)vv, pivv?
 Subsection Exclusive b->sgamma (4 pages)
                                                               Subsection Searches for other decays (2 pages)
    Subsubsection B->K*gamma (BF, A<sub>CP</sub>, A<sub>I</sub>)
                                                                 Subsubsection B->gammagamma
    Subsubsection Other exclusive b->sgamma
                                                                 Subsubsection B->pill
    Subsubsection B<sub>s</sub> ->phigamma
                                                                 Subsubsection Lepton flavour violation
 Subsection b->dgamma (3 pages)
    Subsubsection B->rho(omega)gamma (BF, A<sub>CP</sub>, A<sub>I</sub>)
    Subsubsection Inclusive b->dgamma
```

Charmless

Section Charmless Decays Subsection(Introduction) Subsubsection (Dalitz)

- Resonances
- LASS
- ■sigma/Kappa
- ■non-resonance
- Backgrounds
- K-matrix
- alpha/beta/gamma
- CP Violation

Subsubsection (2-body)

- BF
- Polarisation
- Asymmetries
- Theory
- alpha/beta/gamma

- subSection (Results)
- SubSubsection(Dalitz Results)
 - Branching Fractions
 - Phases
 - Asymmetries
 - G-parity
 - Combined results
- SubSubsection(2-body Results)
 - •BF
 - Polarisation
 - Asymmetries
 - •G-Parity
 - •Broken down as VV/VT/AV...

- MVA
- Dalitz Methods
 - Physics that use it.
 - ML fits
 - Unbinned fits
- Flavor Tagging
 - Tagging Performance -> Mixing
 - Tag-size interference -> sin 2 beta
 - Tagging for background suppression -> analysis specific.
 - Belle updating flavor tagging -> comparisons.
 - Define notation early.
- α/φ2:
 - priorities on analyses that need to be finished.
 - Belle needs to find some effort to update results;
 - BaBar more or less covered.
 - Interaction with charmless K pi/pi pi.

- β/φ1
 - TDCPV analysis section in tools
 - Tag-side interference: here or in tools
 - 2beta+gamma: here or in beta
 - Charmless qqbars: describe selection in charmless
 - Charmless Dalitz: refer to Dalitz section where possible
 - J/psi K* TD angular analysis: section in tools.

- γ/ф3
 - Physics sections that contain Dalitz analysis results:
 - Hadronic B decays to charm (for r estimation for $B \rightarrow D S$ (*)h, $D^*\pi 0$)
 - D mixing and CPV (for D0→K S hh Dalitz models)
 - Global CKM fits
 - Relies on the following Tools sections:
 - Dalitz plot analyses
 - Maximum likelihood fits
 - Tagging and Vertexing (for exclusive and inclusive B reconstruction)
 - Multivariate discriminants, Blind analysis

Charmless

- Alpha/beta/gamma
- Flavour tagging and MVAs
- Charm Dalitz and K-Matrix formalism
- Theory

B Radiative/EW:

- where to put theory description. TDCPV measurements are similar to other TDCPV (refer back to phi1?).
- B->s nu nubar could be in leptonic section.
- Vtd/Vts into rho gamma section?
- Angular analysis. Move LFV in another section, is there a LFV theory section.
- Dark physics, higgs, here or elsewhere (K*II).
- Is Fragmentation/jetset described here (most people use recoil methods so not a problem for them).
- Bs->phi gamma; B->p lambda-bar gamma (here of elsewhere).

• B leptonic:

- K* nu nubar;
- recoil b reconstruction.
- LFV (same question as B Radiative); B->gg, B->emu, B->invisible, B->Kl'l: an exotic search section?

Conclusion

- Physics identified
- Overlaps identified
- New sections identified.
- Re-ordering of some sections would help
- Some people identified to help (even if they don't know it yet)
- Theory help still needs to clarified.