


LOFAR Long-Term 
Archive data transfers
Yan Grange, Hanno Holties, Jorrit Schaap, Adriaan Renting



LTA architecture

• Observations are pre-processed
in Groningen (Tier 0)
• Single copy on one of the three

archive sites
• Life cycle: 
• Data copied to disk pool where it is 

guaranteed for one week
• Long-term storage on tape only

Tier 0 (CEP)

Tier 1 (LTA)

Tier 2 (external/public)

Poznań
PSNC

Jülich
FZJ

Amsterdam
SARA

…



LTA architecture



Data properties
• Instrument (lower level, until 

now)
• Higher level (target 2021-2023)
• Measurement set (MS)

• In essence a database format. The 
content is a list of antenna
combinations and voltages for each
time step. 

• Directory structre
• Typically ~100 files with ~1 

containing the bulk of data
• One observation (‘data set’) 

consists of hundreds of 
measurement sets (‘data 
products’)



Ingest procedure
1. T0 obtain storage ticket from T1
2. T0 prepare data products
3. T0 send data products
4. T0 retrieves checksum from T1
5. T0 verifies checksums of data 

provided by T1
6. T0 puts checksums in LTA 

catalog and obtains final path
7. T0 renames URL to final path
8. T0 prepares and submits

metadata to LTA catalog



Data Transfer - Considerations

• Minimise disk & network IO
• Minimise disk capacity (avoid replication)
• Verify data integrity during transport
• Allow user verification of integrity after retrieval from LTA (i.e. MD5)
• Package data products in tape friendly manner (i.p. MS, but also e.g. 

output PULP))
• Ability to scale out (multiple threads & servers)
• Embed in transaction type of data ingest process



Existing solutions

• Transfer tools (GridFTP, HTTP, but also iRODS)
• Performance through ‘network bashing’ (divide files in chunks, send in 

parallel)
• Multiple reads (checksum, transfer, checksum)
• Sequential handling of individual files

• At time of development no easily adoptable data management tools 
(a la Rucio) available
• Available ones not trivial to integrate with piped/streaming packaging & 

checksum verification.
• Also rather specific use case, relaxed usability requirements (i.e. no 

‘non-expert’ users).



LtaCp
• SRM was originally the default for all data transfers, and still is the main retrieval 

method (work in progress on using webdav).
• Gridftp blocks while remote site is computing checksums. This would cause timeouts in SRM in the 

past. We did move to direct use of globus-url-copy early on, mainly for its capability to read from 
pipes

• Original LtaCp written in Java. Current implementation uses python and default Linux 
tools (netcat, tee, tar) plus custom streaming md5+adler32 calculation and byte count. 

• For long-distance transfers, globus-url-copy (with robot certificate) is used:
• Streaming data through (see next slide)
• No data channel authentication (our data is not that sensitive) [-nodcau]
• 4 parallel threads (unclear if this actually does anything when streaming) [-p4]
• Create directories [-cd]
• Buffer size 131072 [-bs 131072]

• For performance we have 20-40 concurrent data threads. Close to filling 10Gbps, even 
when some transfers wait for remote checksum computation to finish



LtaCp – current implementation



Lessons Learned
• JAVA vs Linux

• Flexibility
• ‘Just retry’ vs interpreting (volatile) error codes/messages from the transfer tool

• Timeouts: If no traffic over connection session, active network components 
along the connection may drop the session (receiving servers, routers, 
firewalls). In particular on control connection during transfer and during 
checksum verification.
• Getting jumbo frames consistent along the line can be (often is) a pain (multiple 

organizations, first pointing at others; intermediate components not 
responding to ping, complicating troubleshooting).
• Same for misbehaving network equipment. Typical first response: ‘works for 

me’. Can take days/weeks of persistent nagging, convincing, and reverse 
engineering of the network to home in on culprit. PerfSonar can help once the 
network has been proven to be good.


