Goals & Strategies	Machine Learning	Numerical technics O	Perspectives

GT5:R&D

Eric Legay, Adrien Matta, Olivier Stézowski

AG GDR Resanet, 9-10th December 2020, LPC Cloud

GT5:R&D

Goals & Strategies ●O	Machine Learning	Numerical technics O	Perspectives
GT5: Research	n and Developr	ment	

Goals

- $\checkmark\,$ Identifying common R&D themes
- $\checkmark\,$ Educating about new technologies
- ? Building collaboration based on common technologies

Goals & Strategies ●○	Machine Learning	Numerical technics O	Perspectives
GT5: Research	n and Developn	nent	

Goals

- $\checkmark\,$ Identifying common R&D themes
- $\checkmark\,$ Educating about new technologies
- ? Building collaboration based on common technologies

Strategy

- ✗ Receiving inputs from other GT
- \checkmark Make our own propositions

Goals & Strategies ●○	Machine Learning	Numerical technics O	Perspectives
GT5: Research	n and Developn	nent	

Goals

- $\checkmark\,$ Identifying common R&D themes
- $\checkmark\,$ Educating about new technologies
 - ? Building collaboration based on common technologies

Strategy

- ✗ Receiving inputs from other GT
- \checkmark Make our own propositions

How to improve?

Goals & Strategies ○●	Machine Learning	Numerical technics	Perspectives
GT5: Research	and Developn	nent	

Hardware:

• LaBr3/CeBr3 for gamma, neutron and charged particle detection

DAQ:

Goals & Strategies ○●	Machine Learning	Numerical technics O	Perspectives
GT5: Researc	h and Devel	opment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

Goals & Strategies ○●	Machine Learning	Numerical technics O	Perspectives
GT5: Research	and Devel	opment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

• Distributed DAQ system

Goals & Strategies ○●	Machine Learning	Numerical technics O	Perspectives
GT5: Research	and Devel	opment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

• Distributed DAQ system

Data processing:

• Common analysis & simulation framework

Goals & Strategies ○●	Machine Learning	Numerical technics O	Perspectives
GT5: Research	and Devel	opment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

• Distributed DAQ system

- Common analysis & simulation framework
- BigData, life-cycle, open data

GT5: Research and Development	Goals & Strategies ○●	Machine Learning	Numerical technics	Perspectives
	GT5: Research	and Develop	oment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

• Distributed DAQ system

- Common analysis & simulation framework
- BigData, life-cycle, open data
- Computing technology (multi-threading, GPU&FPGA accelerations,...)

Goals & Strategies ○●	Machine Learning	Numerical technics O	Perspectives
GT5: Research	n and Develop	ment	

Hardware:

- LaBr3/CeBr3 for gamma, neutron and charged particle detection
- Common ASIC dev. , cold ASIC

DAQ:

• Distributed DAQ system

Data processing:

- Common analysis & simulation framework
- BigData, life-cycle, open data
- Computing technology (multi-threading, GPU&FPGA accelerations,...)

Overlap with some IN2P3 network:

• Hardware, DAQ

Fill the gap for other:

Goals & Strategies	Machine Learning ●O	Numerical technics O	Perspectives
Workshop Ma	chine Learning		

The event

- 29-30 Oct. 2019, hosted at IJCLab
- 15 talks
- 47 participants (PhD, post-doc, researcher and IR from CNRS and CEA)

Goals & Strategies	Machine Learning	Numerical technics	Perspectives
00	•0		00
Workshop	Machine Learning		

The event

- 29-30 Oct. 2019, hosted at IJCLab
- 15 talks
- 47 participants (PhD, post-doc, researcher and IR from CNRS and CEA)

Goals

- Introduce a transversal hot topic
- Survey b/ the meeting \rightarrow mostly introductory
- Stimulate interaction with different type of actors

Goals & Strategies	Machine Learning	Numerical technics	Perspectives
00	0		00
Workshop	Machine Learning		

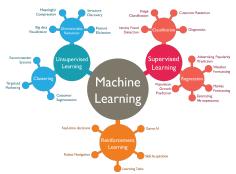
The event

- 29-30 Oct. 2019, hosted at IJCLab
- 15 talks
- 47 participants (PhD, post-doc, researcher and IR from CNRS and CEA)

Goals

- Introduce a transversal hot topic
- Survey b/ the meeting \rightarrow mostly introductory
- Stimulate interaction with different type of actors

Format


- 2 lectures (1h30 each) by J. Donini and Y. Coadou (HEP)
 - introduce concepts
 - illustrate with applications
- Large overview of current applications in nuclear physics
 - data analysis, medical physics, theory, reactors, simulations ...

Goals & Strategies	Machine Learning ○●	Numerical technics O	Perspectives
Workshop Ma	chine Learning		

Outcome

- Positive feedback
- Created awareness

- Impulse for upcoming events
- Creating an IN2P3 network?

Goals & Strategies	Machine Learning	Numerical technics	Perspectives
00	00	•	00
PhyNuBE ev	ent		

B: l'espace fini des nombres binaires

- Lecture by V. Lafage (IJCLab)
- Upcoming paper on the subject
- $\rightarrow~$ How IB is different from IR
- $\rightarrow\,$ Why and when it matters in our field

Goals & Strategies	Machine Learning	Numerical technics	Perspectives
00	00	•	00
PhyNuBE e	vent		

B: l'espace fini des nombres binaires

- Lecture by V. Lafage (IJCLab)
- Upcoming paper on the subject
- $\rightarrow\,$ How IB is different from IR
- ightarrow Why and when it matters in our field

Goals

- Creating awareness on issues and technologies
- Promoting good practices in the field
- Highlight R&D perfomed within RESANET lab.

Goals & Strategies	Machine Learning	Numerical technics O	Perspectives ●○
Possible action	s for 2021		
Hardware:			
DAQ:			
Data Processing:			
Data Flotessing.			
Transverse:			

GT5:R&D

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●○
Possible action	ns for 2021		

• LaBr3/CeBr3 (Photodetection network)

DAQ:

Data Processing:

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●○
Possible action	s for 2021		

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)

DAQ:

Data Processing:

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●○
Possible action	ns for 2021		

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic ^{3–4}He,p,d)

DAQ:

Data Processing:

Goals & Strategies	Machine Learning	Numerical technics O	Perspectives ●○
Possible action	ns for 2021		

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{\rm 3-4}{\rm He,p,d})$

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

Goals & Strategies	Machine Learning	Numerical technics O	Perspectives ●O
Possible action	is for 2021		

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{\rm 3-4}{\rm He,p,d})$

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

• Analysis and simulation of PSA for charged particle (semi-conductor network)

Goals & Strategies	Machine Learning	Numerical technics O	Perspectives ●○
Possible action	is for 2021		

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{3-4}$ He,p,d)

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

• Analysis and simulation of PSA for charged particle (semi-conductor network)

Transverse:

• e-RI scattering (e-acc., RI-production, trapping, detection, DAQ)

Proposed format

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●O
Possible actions for 2021			

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{3-4}$ He,p,d)

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

• Analysis and simulation of PSA for charged particle (semi-conductor network)

Transverse:

• e-RI scattering (e-acc., RI-production, trapping, detection, DAQ)

Proposed format

• 1 or 2 online events, probably 2 half days each

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●O
Possible actions for 2021			

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{3-4}$ He,p,d)

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

• Analysis and simulation of PSA for charged particle (semi-conductor network)

Transverse:

• e-RI scattering (e-acc., RI-production, trapping, detection, DAQ)

Proposed format

- 1 or 2 online events, probably 2 half days each
- 1 "in person" events on 2 days

Goals & Strategies	Machine Learning	Numerical technics	Perspectives ●O
Possible actions for 2021			

- LaBr3/CeBr3 (Photodetection network)
- CMOS Monolithic Active Pixel Sensor (cf. 2018 by semi-conductor network)
- Exotic target for direct reactions (tritium, cryogenic $^{3-4}$ He,p,d)

DAQ:

• High-resolution time-stamped trigger (DAQ network)

Data Processing:

• Analysis and simulation of PSA for charged particle (semi-conductor network)

Transverse:

• e-RI scattering (e-acc., RI-production, trapping, detection, DAQ)

Proposed format

- 1 or 2 online events, probably 2 half days each
- 1 "in person" events on 2 days
- PhyNube lecture to be defined

Goals & Strategies	Machine Learning	Numerical technics	Perspectives
00	00		00
Possible actions for 2021			

e-RI scattering experiment at GANIL

- Only topic for which a clear demand has been made to GT5
- Presented physics case during prospectives: cover many topics of GDR
- $\rightarrow\,$ GT1: GMR, charge radius $\rightarrow\,$ charge density
- \rightarrow GT2: Shape coexistence, fission
- $\rightarrow\,$ GT3: ab-initio and EDF approach
 - LOI and detailed report to the "International comity on the futur of GANIL"

Goals & Strategies	Machine Learning	Numerical technics O	Perspectives ○●
Possible action	s for 2021		

e-RI scattering experiment at GANIL

- Only topic for which a clear demand has been made to GT5
- Presented physics case during prospectives: cover many topics of GDR
- $\rightarrow\,$ GT1: GMR, charge radius \rightarrow charge density
- \rightarrow GT2: Shape coexistence, fission
- $\rightarrow\,$ GT3: ab-initio and EDF approach
 - LOI and detailed report to the "International comity on the futur of GANIL"

Identified R&D needs

- HI e- accellerator (200 mA)
- HI RI production (photo-fission, transfert, MNT)
- SCRIT lons-trapping: 1e7 particules cloud 100 $\mu{\rm m}$ by 120 mm
- e- / p spectrometer: High-Res. High-Acceptance
- Low energy ions identification
- Possible R&D at PERLE