

GT4: Quel est l'apport de la physique nucléaire à la compréhension de l'astrophysique

Short review (Nucleosynthesis) and perspectives

Faïrouz Hammache (IJCLab) & Micaela Oertel (LUTH

fairouz.hammache@ijclab.in2p3.fr; micaela.oertel@obspm.fr

Assemblée générale du GDR RESANET

zoom, 09-10/12/2020

Carbon burning in massive stars: Measurements of ¹²C+¹²C cross-sections using STELLA setup @ Andromède
Fruet+ PRL2020

- → The present results support strongly the fusion hindrance model @ deep sub-barrier energies for the 23Na+p exit channel
- → The present results support sthe fusion hindrance model @ deep sub-barrier energies for the ²¹Ne+α & exit channel & the presence of a resonance @ 2.14 MeV for the ²¹Ne+α exit channel

- \blacktriangleright Classical novae \rightarrow The 4 key reactions with significant uncertainties:
- ◆ ²⁵Al(p,g)²⁶Si
- ²²Na(p,γ)²³Mg (Fougères+Thesis, analysis nearly finalyzed, AGATA/SPIDER/VAMOS/GANIL)
- ³⁰P(p,γ)³¹S (Meyer+Thesis 2020, SPLIT-POLE/ALTO)
- ¹⁸**F**(**p**, α)¹⁵**O**: γ -ray emission ≤ 511 keV **Boulay+Thesis2016**(GANIL) & Riley+ PRC 2020 (ALTO)

 \mathbb{V} Studied via ${}^{19}F({}^{3}He,t){}^{19}Ne(p|\alpha){}^{18}F|{}^{15}O$ using SPLIT-POLE/DSSD/ALTO

- \rightarrow Confirmation of spin-parity and α -branching ratios in a single measurement (angular correlation analysis)
- → The role of the sub-threshold resonances to ${}^{18}F(p,\alpha){}^{15}O$ reaction rate is clarified

- > X-ray bursts Type I \rightarrow Sensitivity studies have shown that only few tens of reactions play an important role.
- ¹⁵O(α,γ)¹⁹Ne Sanchez+ (Ongoing analysis, MUGAST/AGATA/VAMOS/GANIL 2019)
- ³⁵K(p,γ)³⁶Ca Lalanne+ PRC2020 to be submitted (Hupin-GT1 talk)
 Studied via ¹H(³⁷Ca,d)³⁶Ca (p)³⁵K using MUST2@LISE/GANIL

- → New resonances were measured and proton decay branching ratios were determined from the proton angular correlation measurements for the first time
- → The ${}^{35}K(p,\gamma){}^{36}Ca$ reaction rate is now experimentally constrained.
- \rightarrow ³⁵K(p, γ)³⁶Ca will not affect the shape of the X-ray bursts' light curve.

- ➤ **Globular clusters** → One of the main question in this field is what is the nature of the 1^{st} generation of stars? need to improve the uncertainty of the reaction rate of 4 reactions.
- ³⁹K(p,γ)⁴⁰Ca Adsley+(ongoing analysis DRAGON/TRIUMF 2019)
- ³⁰Si(p,γ)³¹P Harrouz+PRC paper in progress
 - Studied via ³⁰Si(³He,d)³¹P using Q3D@MLL

→ Determination of Γ_p & resonance strengths of key resonances for the first time → constrain the ${}^{30}Si(p,\gamma){}^{31}P$ reaction rate

Workshop organized with F. Hannachi, Orsay 12-13 june 2019 : What are the possibilities of experiments in nuclear astrophysics with lasers?

• 1 day dedicated to talks :

- → Direct measurements of cross-sections of astrophysical interest: characteristics and challenges (M. Heine -IPHC)
- \rightarrow Les plasmas lasers, description et diagnostic (J. santos-CELIA)
- → Accélérateurs d'ions dans l'interaction laser plasma: état de l'art (**F. Hannachi-CENBG**)
- → Détection d'observables nucléaires en milieu laser (M. Tarisien-CENBG)

• 1 day dedicated to discussions :

- \rightarrow For which kind of measurements the lasers/plasma could be used?
 - The electron screening effects
 - Nuclear reaction on isomers with short lifetime (>ns) produced by lasers and multiincident particle reactions with the ultra intense beams accelerated with lasers
 - Nuclear Properties in plasma environments
- \rightarrow The technical difficulties
- → Perspectives: Calculations of XS, production & detection to evaluate the feasibility - propose a "already feasible" experiment for the next APOLLON call

Some ideas for GT4 workshops/meetings for the next two years

• A 1 day meeting on "globular clusters nucleosynthesis"

- A 1 day common GT1-GT4 workshop on "how our nuclear physics knowledge at the dripline impact our understanding of nucleosynthesis processes and supernova neutron star matter"
 - A 2 days workshop on "X-ray bursts Type I:
 - 1. Probing neutron star physics using thermonuclear X-ray bursts
 - 2. Nucleosynthesis: is an experimental program at GANIL/SPIRAL1 really possible?"
 - A 1 day workshop on r-process (experiments, theory & modeling)
 - A 1 day workshop on p-process (experiments, theory & modeling)
 - A joint RESANET-OG-GDRs workshop

Any other ideas of actions are welcome