
Software for e+e- analysis
3rd FCC-France / Higgs & ElectroWeak Factory Workshop, Annecy

Thomas Madlener
for the Key4hep team

Nov 30, 2021

Goals for EDM4hep

• The Key4hep project aims to define a common software stack for all future
collider projects

• see talks by Valentin and Clement
• EDM4hep is the common EDM that can be used by all communities in the
Key4Hep project

• ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...

• Support different use cases from these communities
• Efficiently implemented, support multi-threading and potentially
heterogeneous resources

• Generated by podio
• Use experience from LCIO and FCC-edm

Nov 30, 2021 T.Madlener | EDM4hep 1

https://indico.in2p3.fr/event/22887/contributions/102283/
https://indico.in2p3.fr/event/22887/contributions/102282/

EDM4hep schema

EDM4hep DataModel Overview (v0.4)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

Nov 30, 2021 T.Madlener | EDM4hep 2

EDM4hep supports different I/O backends

• Default ROOT backend
• POD buffers are stored as
branches in a TTree

• Can be used in RDataFrame or
with uproot

• Files can be interpreted without
EDM4hep library

• Alternative SIO backend
• Persistency library used in LCIO
• Complete events are stored as
binary records

• Adding more I/O backends is
possible

Nov 30, 2021 T.Madlener | EDM4hep 3

Obj

Collection
ObjectID

Data

Relations

Vector
Members

I/O
Backend

POD buffers

Different ways to work with EDM4hep

• C++ interface
+ Easy access to all relations
+ Transparently handle I/O backends
- Need to compile against existing installation

• Python interface
• Very similar to C++ interface by design
• Using PyROOT and a few dedicated python wrappers

• Reading files with uproot or RDataFrame
+ Can work without edm4hep shared library
+ Data is already stored “columnar”, no need to produce “flat tuples” first
- Relation handling can be cumbersome
- Somewhat relies on implementation details
- Only possible from root files

Nov 30, 2021 T.Madlener | EDM4hep 4

C++ & Python interface

using namespace edm4hep;

auto reader = podio::ROOTReader();
reader.openFile("events.root");

auto store = podio::EventStore();
store.setReader(&reader);

for (size_t i = 0; i < reader.getEntries(); ++i) {
auto& recos =

store.get<ReconstructedParticleCollection>("recos");

for (auto rp : recos) {
// get associated tracks and clusters
auto tks = rp.getTracks();
auto clus = rp.getClusters();

// Loop over decay products
for (auto dp : rp.getParticles()) {

std::cout << dp.getMass() << std::endl;
}

}
}

alignment

store = Eventstore('events.root')

for event in store:
recos = event.get('recos')

for rp in recos:
get associated tracks and clusters
tks = rp.getTracks()
clus = rp.getClusters()

Loop over decay products
for dp in rp.getParticles():
print(dp.getMass())

alignment

• Essentially the same interface in python and C++
• Can also be useful for quick prototyping or debugging

Nov 30, 2021 T.Madlener | EDM4hep 5

FCCAnalyses - RDataFrame & EDM4hep

• FCCAnalyses is a python analysis framework based on RDataFrame
• “Builtin multithreading”
• Comes with high level reco functionality
• Extensible via C++

• Not specific to FCC! Rather to the EDM4hep input format
• Declarative style of analysis

• Describe what you want
• Framework deals with the details of how exactly

• HEP-FCC/FCCAnalyses

Nov 30, 2021 T.Madlener | EDM4hep 6

https://github.com/HEP-FCC/FCCAnalyses

FCCAnalyses - The basic building blocks

• Each analysis needs to define 4 python
modules/scripts

• analysis.py defines the analyzers and
filters to run as well as the available output
variables

• preSel.py defines the samples to use,
number of CPUs and produces a local
ntuple file

• finalSel.py defines the final cuts and
variables that are used for plotting

• plots.py defines which samples to plot
and the cosmetics of the produced plots

Nov 30, 2021 T.Madlener | EDM4hep 7

Analysis steps

Nov 30, 2021 T.Madlener | EDM4hep 8

Run high level reconstruction and first stage selection

python examples/FCCee/flavour/Bd2MuMu/preSel.py

Defining analyzers and filters analyis.py

Nov 30, 2021 T.Madlener | EDM4hep 9

• Branch naming not yet ideal
• Relation handling requires a
bit of “inside knowledge”

• Defining new variables and
filtering on them is easy

• Event loop is only run once!

Defining analyzers and filters analysis.py

Nov 30, 2021 T.Madlener | EDM4hep 10

Dedicated code defined in analyzers/dataframe/myUtils.h and
analyzers/dataframe/myUtils.cc

https://github.com/HEP-FCC/FCCAnalyses/blob/master/analyzers/dataframe/myUtils.h
https://github.com/HEP-FCC/FCCAnalyses/blob/master/analyzers/dataframe/myUtils.cc

Analysis steps

Nov 30, 2021 T.Madlener | EDM4hep 11

Run high level reconstruction and first stage selection

python examples/FCCee/flavour/Bd2MuMu/preSel.py

Run final selection and fill histograms

python examples/FCCee/flavour/Bd2MuMu/finalSel.py

Final selection finalSel.py

Nov 30, 2021 T.Madlener | EDM4hep 12

• Define additional cuts
• Use variables defined
previously to fill histograms

Analysis steps

Nov 30, 2021 T.Madlener | EDM4hep 13

Run high level reconstruction and first stage selection

python examples/FCCee/flavour/Bd2MuMu/preSel.py

Run final selection and fill histograms

python examples/FCCee/flavour/Bd2MuMu/finalSel.py

Produce plots
python config/doPlots.py examples/FCCee/flavour/Bd2MuMu/plots.py

Make plots plots.py

Nov 30, 2021 T.Madlener | EDM4hep 14

• Choose what to plot
• Output format, variables, ...

• Define cosmetics of plots
• Axis scaling, colors, ...

Make plots plots.py

courtesy of C. Helsens

Nov 30, 2021 T.Madlener | EDM4hep 15

Outlook & Currently ongoing work

• Move core functionality and utilities to key4hep/k4Analysis
• Keep FCC specific parts in HEP-FCC/FCCAnalyses

• Currently collaborating with the RDataFrame developers
• Find performance bottlenecks
• Improve handling of inter-object relations
• First version of a RNTuple based I/O backend on the way

• Finalize schema of EDM4hep v1.0
• Still some work to do on the technical side

Nov 30, 2021 T.Madlener | EDM4hep 16

https://github.com/key4hep/k4Analysis
https://github.com/HEP-FCC/FCCAnalyses

Summary

• EDM4hep is the common EDM of the Key4hep project
• Already actively used for physics studies in different communities

• FCCAnalyses/k4Analysis offers an easy to use analysis framework based on
RDataFrame

• Very flexible and powerful
• Comes with high level reconstruction functionality
• Already used for large scale FCC-ee productions

• Still under active development for improved performance and usability

Nov 30, 2021 T.Madlener | EDM4hep 17

Pointers to software (re)sources

• Key4hep
key4hep.github.io/key4hep-doc

key4hep - github organisation
• EDM4hep

key4hep/EDM4hep
cern.ch/edm4hep

• podio
AIDASoft/podio

• FCCAnalyses
HEP-FCC/FCCAnalyses

xkcd.com/138

Nov 30, 2021 T.Madlener | EDM4hep 18

https://key4hep.github.io/key4hep-doc/index.html
https://github.com/key4hep
https://github.com/key4hep/EDM4hep
https://key4hep.github.io/EDM4hep/doc/latest/index.html
https://github.com/AIDASoft/podio
https://github.com/HEP-FCC/FCCAnalyses
https://xkcd.com/138/

Nov 30, 2021 T.Madlener | EDM4hep 0

Backup

podio as generator for EDM4hep

• Original HEP c++ EDMs are heavily Object Oriented
• Deep inheritance structures
• Thread-safety can be hard
• Objects scattered in memory

• Data access can be slow with these approaches
• Use podio to generate thread safe code starting
from a high level description of the desired EDM

• Users are isolated from implementation details
• Provide an easy to use interface to the users

• Users should not need to worry about resource
management

• Treat python as first class citizen and allow
“pythonic” usage

.cc
.cc

class MCParticleData{
 int PDG;
 float charge;
 double mass;
 Vector3d vertex;
};

.h/.cc

MCParticle:
 Members:
 - int PDG
 - float charge
 - double mass
 - Vector3d vertex

YAML

(*podio code
generator) +=

AIDASoft/podio

Nov 30, 2021 T.Madlener | EDM4hep and podio 1 (backup)

https://github.com/AIDASoft/podio

The three layers of podio

• podio favors composition over inheritance and uses plain-old-data (POD)
types wherever possible

• User Layer consists of handles to the EDM
objects and offers the full functionality

• The Object Layer handles resources and
references to other objects

• The actual PODs live in the POD Layer
• Layered design allows for efficient memory
layout and performant I/O implementation

• Possible to support different formats and
I/O backends

Nov 30, 2021 T.Madlener | EDM4hep and podio 2 (backup)

LCIO vs EDM4hep
LCIO EDM4hep

EDM4hep DataModel Overview (v0.4)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

• Since EDM4hep is based on LCIO the high-level structure is very similar
• Largest differences between the two are due to their implementations
• LCIO has over 15 years of usage. A lot of time to develop tools for it.

• Not nearly as far with EDM4hep
Nov 30, 2021 T.Madlener | EDM4hep and podio 3 (backup)

From LCIO to EDM4hep - The easy parts
LCIO

auto* coll = new LCCollectionVec(MCPARTICLE);
auto* mc = new MCParticleImpl;
coll->addElement(mc);

mc->setMass(3.096);

auto* mc2 = static_cast<MCParticle*>(
coll->getElementAt(0));

auto mass = mc2.getMass();

for (auto* p : mc2.getParents()) { /**/ }

EDM4hep

auto coll = MCParticleCollection();
auto mc = coll.create();

mc.setMass(3.096);

auto mc2 = coll[0];
auto mass = mc2.getMass();

for (auto p : mc2.getParents()) { /**/ }

• The most common use cases work very similarly with mainly syntactic
differences

• pointer vs. value semantics
• Differences in reader/writer handling are “hidden” by framework code

Nov 30, 2021 T.Madlener | EDM4hep and podio 4 (backup)

From LCIO to EDM4hep - The parts that still require work

LCIO

auto recoMCNav = LCRelationNavigator(
evt->getCollection("RecoMCTruthLink"));

auto relRecos =
recoMCNav->getRelatedToObjects(mc);

//

EDM4hep

auto recoMCAssoc =
store.get<MCRecoParticleAssocCollection>(
"RecoMCTruthLink");

std::vector<ReconstructedParticle> relRecos;
for (const auto assoc : relMCAssoc) {

if (assoc.getSim() == mc) {
relRecos.push_back(assoc.getRec());

}
}

• LCIO has a 15 years head start in tooling, hiding some of the complexities
• Port the tooling to EDM4hep as we go along and as necessary

Nov 30, 2021 T.Madlener | EDM4hep and podio 5 (backup)

	Appendix

