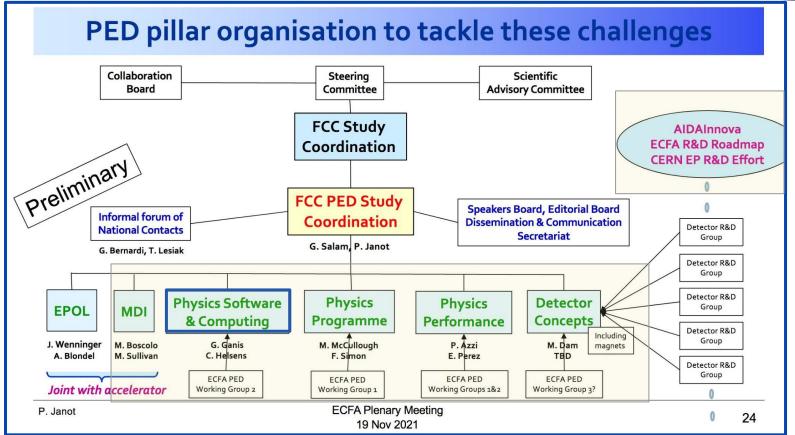
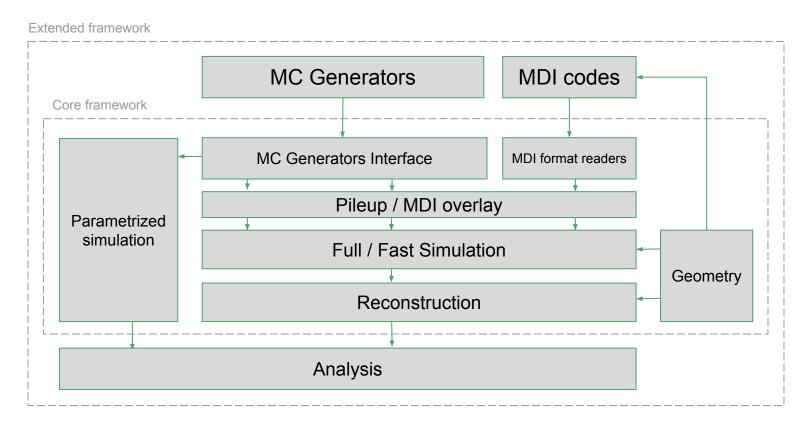

Overview of the Software for FCC

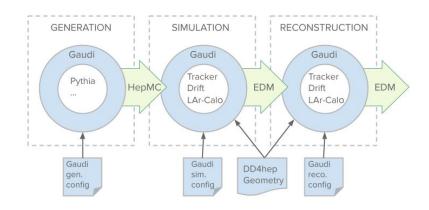
3rd FCC-France workshop

Nov 30, 2021 C Helsens CERN-EP


Role and relation with other groups


Role and relation with other groups

Typical workflows to support



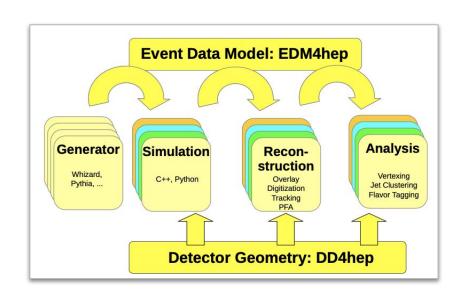
FCCSW approach

- Started in 2014
- Driving considerations
 - One software stack to support all the cases (hh,ee,eh), all the detector concepts
 - Need to support physics and detector studies
 - Parametrised, fast and full simulation (and mixture of the three)
 - Modularity: allow for evolution
 - Component parts can be improved separately
 - Allow multi-paradigm for analysis
 - C++ and Python at the same level
- Adopted Strategy
 - Adapt existing solutions from LHC (Gaudi, ...)
 - Look at ongoing common R&D projects (AIDA)
 - Invest in streamlining of event data model
- Focus on FCCee after CDR (2019)

The common software vision

Create a software ecosystem integrating in optimal way various software components to provide a ready-to-use full-fledged data processing solution for HEP experiments

Complete set of tools for

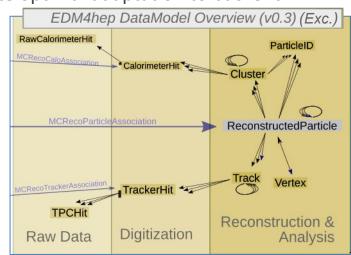

- Generation, simulation, reconstruction, analysis
- Build, package, test, deploy, run

Core Ingredients of current key4hep

- PoDIO for EDM4hep, based on LCIO and FCC-edm
- Gaudi framework, devel/used for (HL-)LHC
- DD4hep for geometry, adopted at LHC
- Spack package manager, lot of interest from LHC

Community project, unifying efforts

- Contributions from CLIC, ILC, FCC, CEPC
- And interest from STCF, muon collider, ...


Kick-off meetings in Bologna, Hong Kong

The common event data model: the challenges

EDM provides common language for exchange among framework components

- <u>Challenge 1:</u> efficient support different collision environments (e⁺e⁻, pp, ...)
 - Positive first experiences with FCC-hh components
- <u>Challenge 2:</u> keep I/O efficient
 - PoDIO: separate definition from implementation, facilitate optimal adaptation to backend
 - POD layer designed for efficient I/O, simple memory layout
 - Flat data support (RNTuple) will provide insight
- <u>Challenge 3:</u> efficient support for schema evolution
 - Requires schema evolution in PoDIO, planned
- <u>Challenge 4:</u> efficient support for detector needs
 - Interaction w/ detector teams from the start
 - Eg. cluster counting for IDEA Drift Chamber

FCCSW @ key4hep adoption process

Already Gaudi based

- Move FCC-edm to EDM4hep
- Re-arrangement and modernization
- Some components considered for migration to key4hep
 - Generation, simulation, reconstruction, ...

Migration status

old FCCSW (version ≤ 0.16)	Key4hep	new FCCSW	status	migration
FWCore	k4FWCore		done	yes
Sim/SimDelphesInterface	k4SimDelphes		done	yes
Generation	8	k4Gen	done	under evaluation
Sim		k4SimGeant4	done	under evaluation
Reconstruction/Rec[]Calorimeter		k4RecCalorimeter	done	under evaluation
Reconstruction/RecDriftChamber		to be determined		
Detector		FCCDetectors	done	no, FCC specific
	to be determined	dual-readout		under evaluation

Monte Carlo Generators

- General purpose generators available
 - Whizard, Pythia8, MadGraph, Sherpa, ...
- Legacy LEP generators still state of the art at the {Z, WW} energies
 - "Archeological" work to recover KKMC, BHLUMI, BabaYaga, ...
- Main software challenges
 - Interfacing with the framework
 - Through common data format, e.g. LHEF, or callable interface (Pythia8)
 - Availability in the shared software stacks
 - Private codes, unversioned tarballs, ... version control issues
 - Early interactions with MC groups to ease the interface and facilitate feedback loop
- Other requirements relevant for FCCee
 - Uniform treatment of beam parameters (beam energy spread, crossing angle)

Connections w/

- Physics Programme
- Physics Performance
- ECFA
- Phenomenologists
- Key4hep

See also

Review at the ECFA kick-off (W. Kilian)

ECFA 1st Topical Meeting on Generators (<u>here</u>)

Beam and MDI-related backgrounds

- FCCee interaction region design requires deep level of understanding of the detector backgrounds
 - Only achievable with integration in experiment software
- Several codes for modeling the processes, including
 - GuineaPig, MDISim, SynRad, Sync_Bkg, Pythia, Whizard, ...
 Codes not always in public repositories, outputs in different, non-standard formats
- Target: supercode providing common interface to relevant codes
 - Framework integration to unify/simplify access with controlled configuration and normalization
 - On going effort, example w/ GuineaPig available
- Consistent description of the relevant geometry elements
 - Requires interplay between detector and machine geometry formats (e.g. CAD)

Connections w/

- MDI study group
- Physics Performance
- Detectors

Geometry description: DD4hep

- <u>FCCDetectors</u> contains what is currently available
 - Elements of the interaction region (BeamPipe, Instrumentation, HOMAbs, LumiCal)
 - CLD (CLIC detector for FCC)
 - Simplified Elements for IDEA (no calo, no muon)
 - Simplified Elements for IDEA with FCChh adapted calo (LAr/Tile) (no muon)
 - FCChh baseline (+ some variants)
- Standalone implementations
 - IDEA Dual-Readout calorimeter: <u>dual-readout</u>
 - IDEA Drift Chamber and muon chambers not started

Connections w/

- Detectors
- Physics Performance

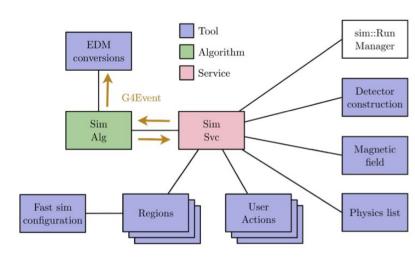
Completing the detector palette in DD4hep

- DD4hep allows easily replacement of parts
 - Example is a reduced version of the FCChh LAr ECal + Tile HCal to be evaluated, for example, together with IDEA tracking system
 - First DD4hep description available for testing
 - Plug&Play in place replacement technology to be consolidated and streamlined
- New sub-detector concepts must be integrated in key4hep/FCCSW
 - Part of the FCC Detector Concept mandate:
 - Promote the use of the common FCCSW software platform & tools, including the development of the sub-detector geometrical description, simulation, and local reconstruction;
 - Integrate sub-detectors into detector concepts: a plug-and-play technology is offered by the key4hep software framework;

Parametrized Simulation

- Current studies are mostly based on <u>Delphes</u>
 - Includes a tracking system, embedded into a magnetic field, calorimeters and a muon system
 - TrackCovariance, dEdx, ParticleDensity: enable realistic algorithms for vertexing, b-tagging, ...
 - Effect of magnetic field, granularity of calorimeters, sub-detector resolutions
 - Also outputs observables such as isolated leptons, missing energy and collection of jets
 - Interfaced to standard file formats (e.g. LHEF, HepMC)
 - Key4hep provides Delphes interfaces/executables producing EDM4hep output
 - Standalone executables, e.g. DelphesPythia8_EDM4HEP; Framework integration
 - Palette of detector concepts for e⁺e⁻ available
- <u>SVG</u> being also considered in key4hep
 - Potentially more complete and faster
 - Needs some adaptation work (EDM4hep output, ...)

Connections w/


- Physics Performance
- Detectors

Simulation

- Geant4 (fast / full)
 - Gaudi components exists to create
 - User Actions
 - Regions
 - Sensitive detectors
 - Selective output options
 - Mixing fast and full G4 simulation possible
 - SimG4Full / SimG4Fast
- k4SimGeant4
 - Gaudi module ready to be migrated to key4hep
 - Adapt to the final key4hep choice
 - FCC, CEPC, LC approaches being discussed

Connections w/
- Key4hep

Reconstruction

- Little specific to FCC-ee
 - Tracking and calorimetric algorithms for baseline FCC-hh
 - Full sim studies for FCCee not really started
- Lots of algorithms available for iLCSoft
 - Accessible through LCIO to/from EDM4hep on the fly converter
 - Enables initial studies and evaluations
 - Base / reference for native implementation when required
- Need to integrate algorithms attached to a given detector concept
 - o E.g. IDEA Drift Chamber or Dual Readout calorimeter
- Framework integration of general purpose tools such as ACTS, PandoraPFA, CLUE/TICL, ...

Connections w/

- Physics Performance
- Detectors
- Key4hep

Analysis: FCCAnalysis

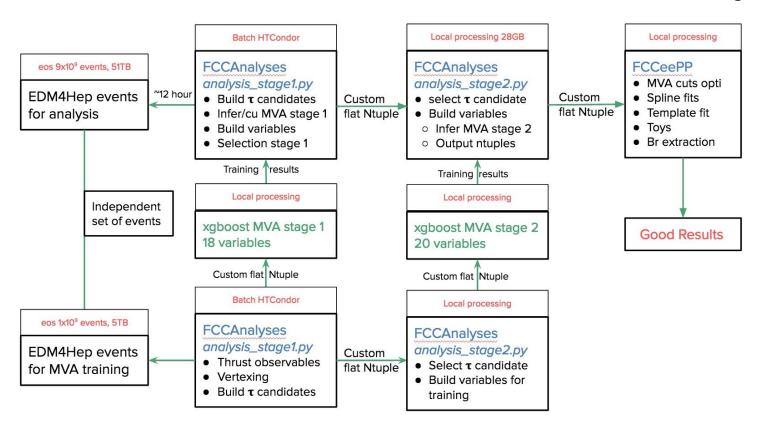
More in Thomas talk's

- Replaces the fully pythonic HEPPY framework used for CDR
 - Good functionality but extremely slow
- Based on RDataFrame, new ROOT paradigm aimed for (HL-)LHC
 - Python framework with C++ backend
 - Bridges the gap with LHC involved people
- Runs on EDM4hep, non FCC specific
 - Prototype of generic analysis framework

Analysis configuration 4 **python** scripts to configure:

- 1. Samples to run over
- 2. Functions/algorithm to call
- Event selection
- 4. Plotting configuration

Connections w/


- Physics Performance
- Key4hep

Common utility functions, algorithm, etc...

C++ library

Common interface code Sample database, RdataFrame, plotting **Python**

First <u>published</u> analysis with FCCAnalysis: $B_c \rightarrow \tau^+ \nu_{\tau}$

Involves:

- Distributed processing
- Storage
- ML Training
- Fitting
- Local processing
- ...

Software infrastructure

- Event Producer Workload and Data Management
 - Currently still using home-made solution (HTCondor, EOS, ...) See Physics' talk
 - Moving towards DIRAC (via iLCDirac)
 - Provides web and command line interfaces, native and advanced support for data management, ...
 - Ready for experimental runs at CERN; CINECA site being added

Connections w/

- Key4hep
- Physics Performance

- Build / packaging / testing / deploying
 - Now fully relying on Key4hep
 - Spack for build/packaging, CernVM-FS for deployment; GitLab CI for continuous integration
 - Initial build/deploying infrastructure (extension of LCG builds) being phase-out

A few considerations on the resources needed

- The run at Z peak sets the scale
 - \sim $\approx 10^{12}$ evts, 3-6 EByte storage, 10 MHS06 CPU (\approx current ATLAS yearly needs)
- These numbers are similar to the ones expected for (HL-)LHC
 - Do not expect issues for operations in 2040 and beyond
- For the FSR the situation is different
 - Analysis at Delphes level are possible (see $B_c \rightarrow \tau^+ \nu_{\tau}$)
 - Full simulation of all components require 10³-10⁴ times more
- Techniques of overcome this limitations are required
 - E.g. interplay of full and parametrized simulation (see next)
- Planned community improvements in fast simulation very welcome
 - Possible improvements of the parametrized simulation treatment of critical parts such as calorimetric object could also be envisaged / investigated
 - E.g. based on improvements of fast simulation à la Geant4/GFlash or Machine Learning / GAN

A few considerations on the resources needed

- The run at Z peak sets the scale
 - \circ ≈10¹² evts, 3-6 EByte storage, 10 MHS06 CPU (≈ current ATLAS yearly needs)
- These numbers are similar to the ones expected for (HL-)LHC

Third you at Delpines level are possible (see D

Computing needs were estimated in an essay prepared in the context of a FCC wide EPJ+ contribution on FCC-ee challenges

- Full simulation of all components require 10³-10⁴ times more
- Techniques of overcome this limitations are required
 - E.g. interplay of full and parametrized simulation (see next)
- Planned community improvements in fast simulation very welcome
 - Possible improvements of the parametrized simulation treatment of critical parts such as calorimetric object could also be envisaged / investigated
 - E.g. based on improvements of fast simulation à la Geant4/GFlash or Machine Learning / GAN

Scale of Monte Carlo productions done

- Spring 2021 production, EDM4hep
 - Delphes events IDEA with Track Covariance full matrix lower triangle
 - Total: ~10¹⁰ events, ~53 TB, mostly at Z peak
- Existing productions for FCC-hh (100 TeV)
 - EDM4hep
 - Total: ~1.3x10⁸ events, ~14 TB
 - Old fcc-edm
 - Delphes: ~2.1x10⁹ events, ~93 TB
 - Full sim, single particle: ~2.4·10⁹ events, ~160 TB
- Stored at CERN on EOS
 - /eos/experiment/fcc/{ee,hh}/generation/DelphesEvents/

Relation with R&D activities

- CERN EP software R&D
 - All carried-on task/activities are connected to FCC needs
 - Key4hep is crucial, but all the other carried-on activities are connected
 - E.g. (ML-based) fast simulation of calorimeters, RNtuple-related analysis improvements

AIDA Innova

- Very similar palette of software R&D activities
- Could potentially also profit of some person power for specific tasks

ECFA R&D

Indirect connection with WG2 (Physics Analysis Methods)

Priorities, looking forward

- Targets: FSR by end 2025, analysis completed by end 2024 / early 2025
- S&C milestones (as presented at EP management on Nov 2020)
 - o End 2021
 - Completed migration to common software EDM4hep / key4hep
 - Minimal set of MC generators available
 - Delphes infrastructure ready and documented
 - Minimal set of detectors (geometry, digitization, reconstruction) implemented
 - Needed computing resources evaluated
 - Early 2022
 - First version of "supercode" for realistic estimation of MDI related backgrounds
 - Comprehensive documentation of the whole (analysis) chain available
 - o End 2022
 - Commissioning of large scale production with the whole setup

Priorities, looking forward

Consolidate / enable :

- Analysis workflows with Delphes in particular documentation
- Full simulation with CLD w/ reconstruction through LCIO converter / iLCSoft algorithms
- Commission DIRAC-based production infrastructure

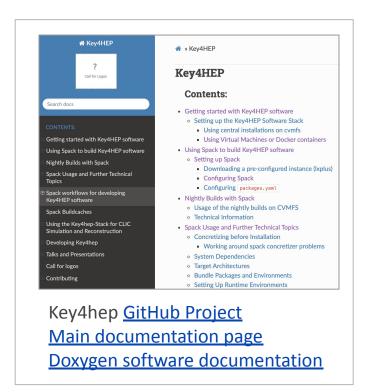
Detector descriptions for full simulation

- Streamline sub-detector replacements exploiting DD4hep features (PlugnPlay)
- Missing IDEA components in DD4hep / FCCDetectors
 - Adopt Dual Readout existing implementation
 - Foster implementations for Drift Chamber, Vertex detector and Muon chambers

Event reconstruction

- External packages such as ACTS (tracking), CLUE (clustering), Pandora (Pflow)
- Support custom reconstruction when needed (such as PID in a RICH, pi0, ...)

Priorities, looking forward


- Investigate and possibly import improvements in fast realistic simulation of calos
 - In connection with EP R&D, AIDAInnova
- Continue revision and interface of MDI codes
 - Includes finding a solution for CAD to/from DD4hep
- Continue to investigate state of the art analysis solution
 - Adopt them as early as possible
- AoB
 - Event Display
 - Phoenix ? Eve based?
 - 0 ...

Useful pointers

- Project repositories
 - GitHub: https://github.com/HEP-FCC
 - CernVM-FS: /cvmfs/fcc.cern.ch
- Forum
 - https://fccsw-forum.web.cern.ch/
- Existing documentation
 - https://hep-fcc.github.io/fcc-tutorials/index.html

Documentation, tutorials, ...

