Possibilities/reconstruction with a high granularity Calorimeter in FCC

Gérald Grenier

Institut de Physique des 2 Infinis de Lyon (IP2I)

Workshop FCC France, Annecy Nov 30 - Dec 2, 2021

ILC project

- Recent evolution of ILC project was to build a 250 GeV ee collider.
- Evolution to reduce the initial construction cost.
- Original ILC project, a 500 GeV to 1 TeV ee collider.
- ILC TDR base physics studies scenario : 250 fb $^{-1}$ at 250 GeV, 500 fb $^{-1}$ at 500 GeV, 1000fb $^{-1}$ at 1000 GeV.
- Jet energy range in ILC larger than in FCC-ee.

Main differences

- FCC has higher instantaneous and integrated luminosity.
- ILC has beam polarisation.

Similar physics

ILC jets requirements \sim FCC-ee jets requirements.

Higgs branching ratio

$\mathcal{O}(10\%)$	$\mathcal{O}(1\%)$	$\mathcal{O}(0.1\%)$	$\mathcal{O}(0.01\%)$
$b\bar{b}$ (58%)	$\begin{array}{ccc} gg & (8.6\%) \\ \tau^{+}\tau^{-} & (6.3\%) \\ c\bar{c} & (2.9\%) \end{array}$	$\gamma\gamma$ (0.23%)	$ \begin{array}{c} \mu^{+}\mu^{-} & (0.02\%) \\ s\bar{s} & (0.02\%) \end{array} $
W^+W^- (21%)	ZZ (2.6%)	$Z\gamma$ (0.15%)	0.0270)

 $\label{eq:Goal} Goal is to measure these BR at the percent or sub-percent level. \\ This requires very good jet flavor-id (b, c, gluon) and good di-jet mass resolution (W-Z id).$

Higgs production

Higgs factory = Higgsstrahlung at $\sqrt{s} \sim 250$ GeV.

b, c and gluon tagging

- needed to access the H $\rightarrow b\bar{b},\ c\bar{c}$ and gg branching fraction.
- needs good vertex detector.
- ILC design goal on impact parameter resolution:

 $5\mu \mathrm{m} \oplus rac{10\mu \mathrm{m}}{p(GeV) \mathrm{sin}^{rac{3}{2}} heta}$

WW and $ZZ\ \mbox{Branching Ratio}$

• Br(H \rightarrow ZZ)=0.1 Br(H \rightarrow WW). %-level precision:

needs good di-jets mass resolution.

so needs good jet energy resolution.

• ILC design goal:

 $\begin{array}{l} \Rightarrow \ 3 \ {\rm to} \ 4 \ \% \ {\rm resolution \ on \ jet \ energy \ above \ } \sim \ 50 \ {\rm GeV} \\ \Rightarrow \ \frac{\Delta E_{jet}}{E_{jet}} \lesssim \frac{30\%}{\sqrt{E({\rm GeV})}} \end{array}$

• Goal met in ILD with High Granularity calorimeter and Particle Flow Algorithm (PFA).

Reaching jet energy resolution

Particle Flow Algorithm (PFA)

- $\bullet~$ ILC/FCC physics program requires W/Z $\rightarrow q\bar{q}$ mass separation.
- \Rightarrow jets resolution [50, 500] GeV better than $\sim 3 4$ % $\sim 30\%/\sqrt{E}$.
- Use optimal sub-detector for jet energy estimation :

tracker (~ 60%), ECAL (~ 30%), HCAL (~ 10%).

• Separate energy depositions from close-by particles.

Extensive studies have been done with ILD detector option 1 and PandoraPFA algorithm.

At higher jet energy (E $\gtrsim\!\!100$ GeV), dominant contribution to resolution is confusion.

See Steven Green, Cambridge University Thesis 2017

Electromagnetic calorimeters for ILD

See Vincent's talk yesterday

Some CALICE ECAL prototypes

ILD option 1, CEPC baseline

Silicon W-ECAL

- Towards technological prototype
- 15 (ightarrow 30) layers, W absorber.
- 525 μ m thick Si-wafer, 5 × 5 mm² pads read by 12 bit ADC.
- $18 \times 18 \text{ cm}^2$ active area.

ILD option 2, CEPC option

Scintillator Strip W-ECAL

- Towards technological prototype
- 30 layers, 3.5 mm thick W + 1-2 mm thick scintillator.
- strip 5 × 45 mm², alternating orthogonal orientation (effective cell size 5 × 5 mm²).
- Multi (1600) Pixel Photon Counter reads 9 strips.

Hadronic calorimeters for ILD

See Vincent's talk yesterday

Some CALICE HCAL prototypes

ILD option 1

Scintillator HCAL (AHCAL)

- Towards technological prototype
- 38 layers, Steel or W absorber, 5 mm thick scintillator tiles.
- Tiles size $30 \times 30 \text{ mm}^2$.
- Active area $90 \times 90 \text{ cm}^2$
- Tiles read by 16-bit ADC.

ILD option 2, CEPC baseline

Gaseous SDHCAL

- First complete technological prototype
- 50 layers, steel absorber, 3 mm thick Glass Resistive Plate Chamber
- $1 \times 1 \text{ m}^2$ active area.
- Cell size defined by embedded readout electronic :96 × 96 pads of $10 \times 10 \text{ mm}^2$ per m², 2-bit readout.

PFA energy resolution

Jet component fractions have large fluctuations.

To simplify, assume two components, a charged one, fraction F_{ch} , measured by the tracker with response R_{tr} and a neutral one, fraction $1-F_{ch}$, measured by the calorimeters with response R_{calo}

$$E_{reco} = R_{tr}F_{ch}E + R_{calo}(1 - F_{ch})E$$

with mean response $\overline{R_{tr}} = 1 + b_{tr}$ and $\overline{R_{calo}} = 1 + b_{calo}$

$$\overline{E_{reco}} = E + E\left(b_{tr}\overline{F_{ch}} + b_{calo}\overline{(1 - F_{ch})}\right)$$

Uncertainties

$$\underbrace{Var(E_{reco})}_{\sigma^2_{E_{reco}}} = \underbrace{Var(R_{tr})\overline{F_{ch}}^2 E^2}_{\sigma^2_{E_{tracker}}} + \underbrace{Var(R_{calo})\overline{1-F_{ch}}^2 E^2}_{\sigma^2_{E_{calo}}} + Var(F_{ch}) \left(b_{tr} - b_{calo}\right)^2 E^2$$

Confusion :

- assign neutral calorimeter hits to charged particles : $b_{calo} \searrow \Rightarrow \overline{E_{reco}} \searrow, \sigma_{E_{reco}} \nearrow$
- assign charged calorimeter hits to neutral particles : $b_{calo} \nearrow \overline{E_{reco}} \nearrow, \sigma_{E_{reco}} \nearrow$

ILD optimisation studies with PandoraPFA

Jets in CEPC

Jets reconstruction in CEPC

Baseline detectors Si-WECAL and SDHCAL.

Geometry ILD option 2, "Videau" Gerometry.

PFA ARBOR

Jet algorithm Durham.

Contrary to PandoraPFA jet studies with ILD, CEPC jet studies uses jet algorithm.

Alternative option for CEPC detector : IDEA

ILC versus FCC/CEPC

Being linear

- Lower luminosity but beam polarisation.
- Most of the time idle
 - Time to read data : triggerless
 - Time to cool : embedded electronics with power pulsing ⇒ no cooling, More homogeneous calorimeters

Being circular

- Higher luminosity :
 - higher particle flux Data volume : \neq DAQ/trigger system

Never idle

- Data rate : continuous readout, trigger/data paths
- Add cooling or don't embed electronics

Example of R&D option for circular with SDHCAL

Multigap GRPC

Cooling issue

- Add water cooling inside absorber.
- Replace part of the absorber with copper plates.
- Power hungry electronics on the side coupled to intertwined strips on PCB.

Also add precise time measurements for 5D calorimetry

Gérald Grenier (IP2I Lyon)

high granularity Calorimeter in FCC

- \bullet Jet reconstruction with resolution below 4% has been achieved by ILD above \sim 50 GeV and CEPC above \sim 70 GeV.
- Such resolution requires PFA and high granularity calorimeters.
- ILD PFA studies tends to show that the limiting factor is confusion in HCAL.
- Various R&D strategies can address that limit like reducing cell size or adding precise timing.

Backup

Higgs at \sqrt{s} =240-250 GeV

Higgsstrahlung

- Dominant production mode.
- FCC luminosity 5 ab⁻¹.

- Cross-section \sim 200 fb.
- One million Higgses.

Does the higher FCC-luminosity allow to reduce jet energy resolution and not distinguish Z and W di-jets ?

Let's assume, W and Z are not hadronically separated.

• $10^6 \text{ H} \Rightarrow \sim 1000 \text{ events}$

 $\Rightarrow \sigma_{stat} \sim 3\%$.

- Extract Higgs total width by combining $\sigma(HZ)$ and BR(H \rightarrow ZZ) measurements.

$ee \rightarrow ZH \rightarrow ZVV$ full hadronic

- Reconstruct Z in ee, $\mu\mu$ or $q\bar{q}$ and H in 4 jets.
- 10^6 ZH events yield ~ 74000 H \rightarrow WW and 9800 H \rightarrow ZZ.
- A 1% contamination of ZZ by WW implies less than 98/74000=1.3 $\times 10^{-3}$ fraction of W events reaching the Z mass.
- $\sigma = \frac{m_Z m_W}{3} = 3.45 GeV \Rightarrow \frac{3.45}{m_W} \sim 4.2\%$ mass resolution on hadronic vector bosons.
- In fact, slightly better is needed to take into account both Z and W mass peak width.