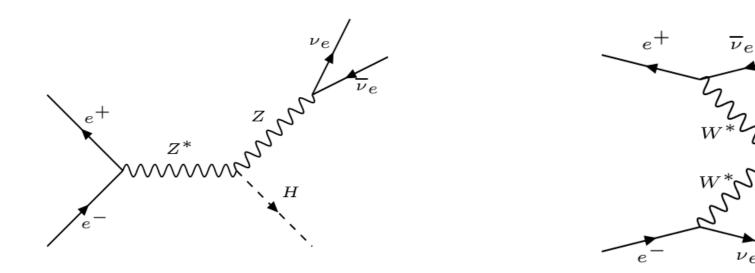
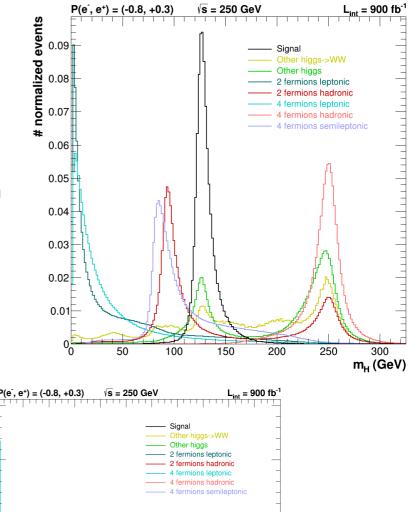

Measurement of $e^+e^- \rightarrow v_e^-v_e^-H$ (H->WW*->qqqq) at future leptonic Colliders

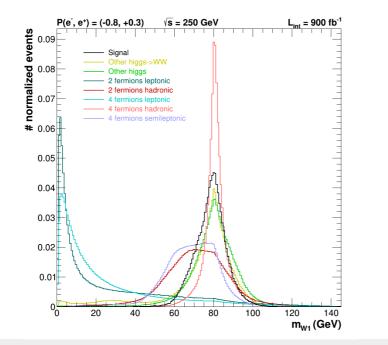
Guillaume Garillot Institut de Physique des 2 Infinis de Lyon (IP2I)

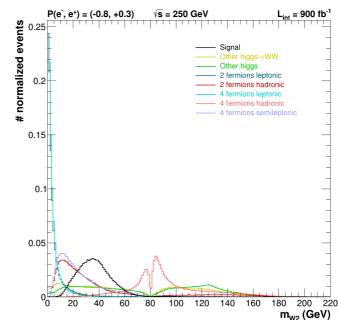
Workshop FCC France, Annecy Nov 30 - Dec 2, 2021


Studied channel

	Channels	Cross section (fb)
	$\nu_e \overline{\nu}_e H \to W W^* \to q \bar{q} q \bar{q}$	3.43
	2 fermions leptonic	12983
Low number of signal events expected :	2 fermions hadronic	77324
 For ILC at 250 GeV (900 fb⁻¹): ~ 3000 events 	4 fermions leptonic	10424
	4 fermions hadronic	16800
	4 fermions semileptonic	19529

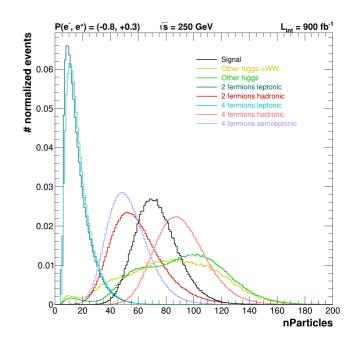

Studied channel

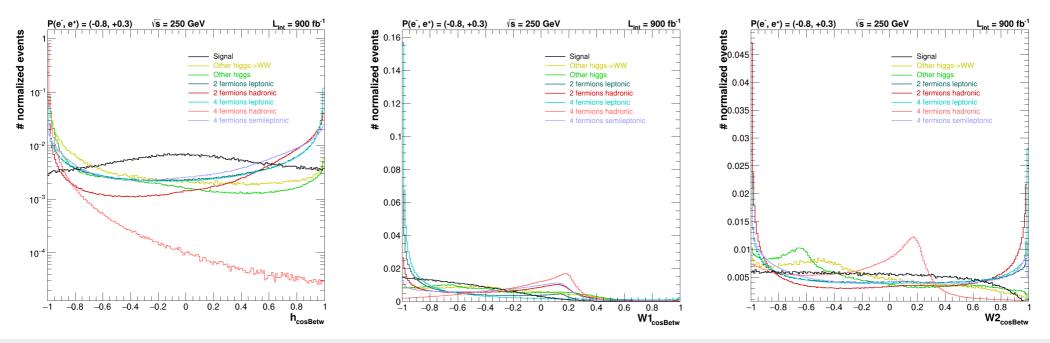

- ILD with l5_o1_v02 model
 - with background overlay
- The $v_{_{\rm e}}v_{_{\rm e}}{\rm H}$ production files contains the contribution from both Higgsstrahlung and W-fusion (+interference)
 - ~45 % of events from W-fusion
 - It is not possible to distinguish between those both channels

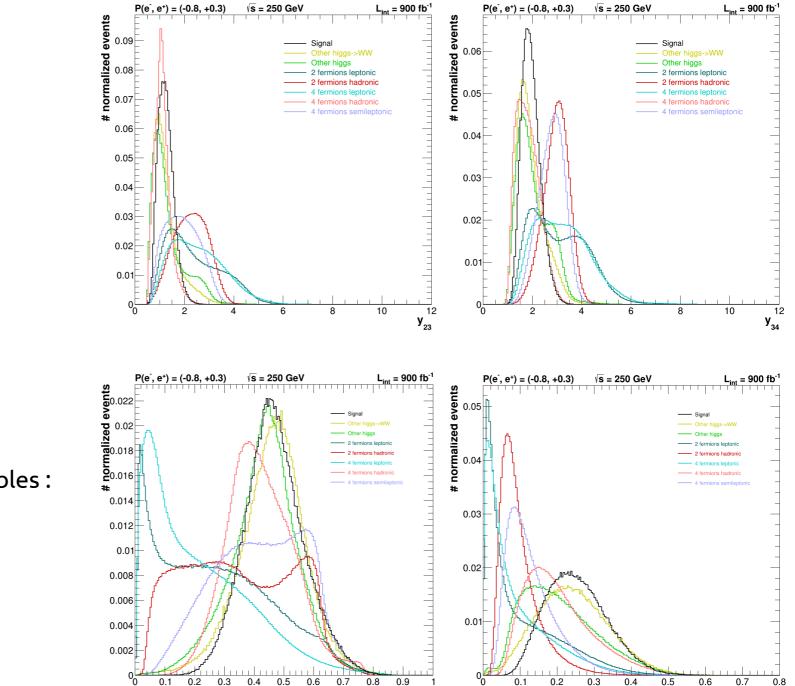


 ν_e

- Durham jet algorithm
- Event forced into 4-jets
- Jet pair with mass closest to W mass is tagged as onshell W boson
- The 2 remaining jets are tagged as off-shell W* boson
- Event rejected if :
 - at least one isolated lepton is found
 - higgs mass < 70 GeV or > 200 GeV





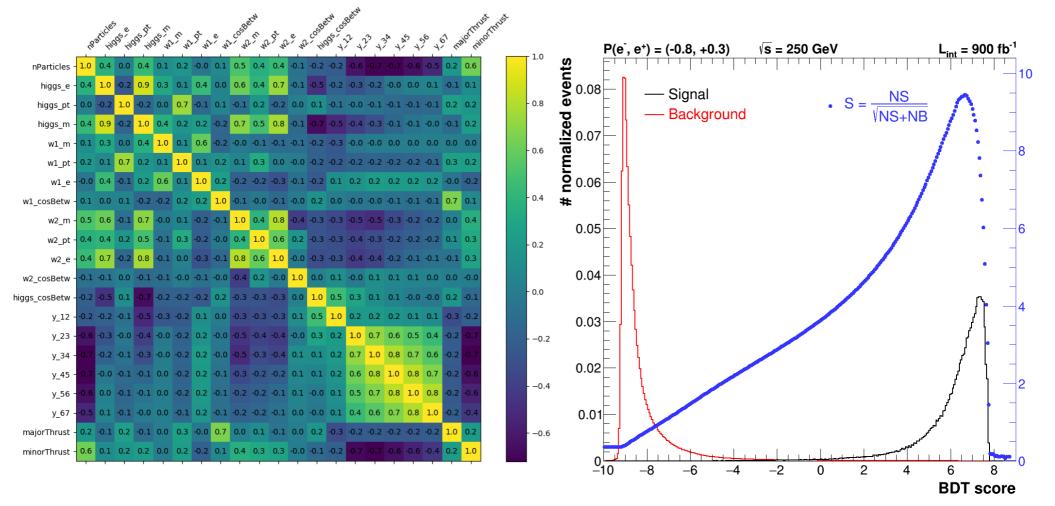

BDT input

- Number of reconstructed particles
- higgs energy, higgs pt, higgs mass
- Cosine of the angle between on-shell and off-shell W
- On-shell W energy, pt, mass
- Off-shell W energy, pt, mass
- Cosine of angle between the 2 jets tagged as on-shell W
- Cosine of angle between the 2 jets tagged as off-shell W

BDT input

Major thrust

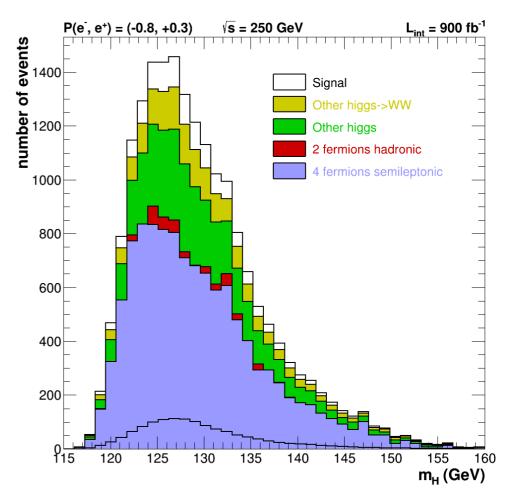
- Jet parameters :
 - -log10(y12)
 - -log10(y23)
 - -log10(y34)
 - -log10(y45)
 - -log10(y56)
 - -log10(y67)


- Event shape variables :
 - Major thrust
 - Minor thrust

Minor thrust

BDT output

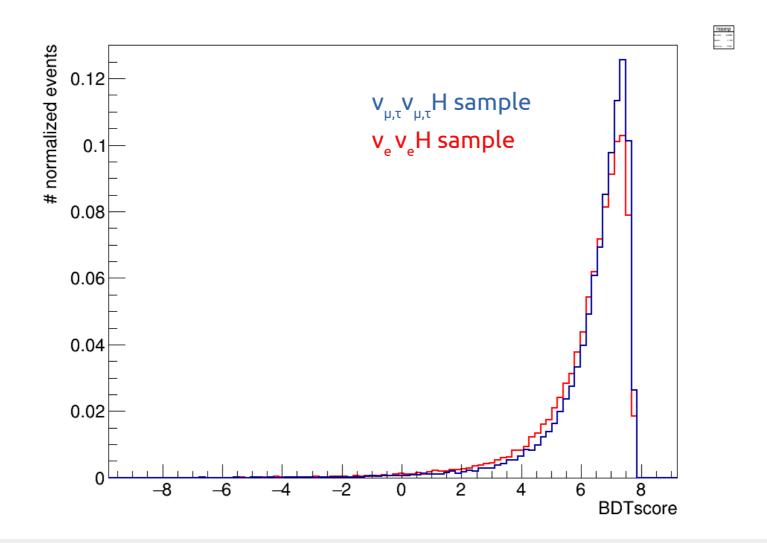
- scikit-learn
- HistGradientBoostingClassifier(max_iter=300, max_depth=None, max_leaf_nodes=70, learning_rate=0.2, n_iter_no_change=20, validation_fraction=0.3)


• Best significance : 9.45 for BDT cut = 6.66

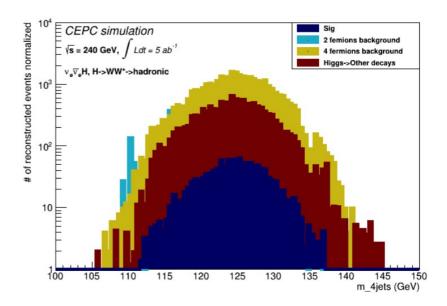
Final selection

• ILD case

900 fb⁻¹ at P(e⁻,e⁺)=(-80 %,+30%)

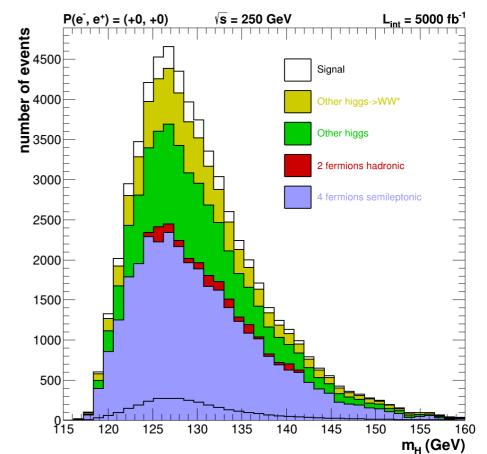

- ~ 1300 signal events expected after selection
 - But this includes both higgsstrahlung and W-fusion events
 - 41.68 % signal selection efficiency, but what about the W-fusion events selection efficiency ?
 - The higgsstrahlung events selection efficiency is measured with the v_{µ,τ}v_{µ,τ}H events (no W-fusion here)
 - \rightarrow 50.8 % selection efficiency
 - This gives roughly a 30 % selection of Wfusion events -> only 420 W-fusion events remaining, which means a true significance of 3.05 (not very exciting...)

	Channels	Events expected	Events selected	Selection $\%$
2	Signal	3116	1299	41.68~%
	Other Higgs $\rightarrow WW^*$	57950	1854	3.199~%
	Other Higgs	223997	4009	1.79~%
	2 fermions leptonic	11684593	0	0 %
-	2 fermions hadronic	69591936	345	$4.952.10^{-4}$ %
	4 fermions leptonic	9381313	1	$1.597.10^{-5}~\%$
	4 fermions hadronic	15120406	50	$3.318.10^{-4}$ %
	4 fermions semileptonic	17576134	11327	$6.445.10^{-2}$ %


Final selection

- The BDT tends to select more the higgsstrahlung events than the W-fusion events.
- I cannot avoid this for the moment, because the signal sample contains both
- Will need a dedicated W-fusion sample to improve BDT accuracy

Circular colliders case


- Bing Liu results for CEPC :
 - 5000 fb⁻¹ at 240 GeV
 - $N_s / \sqrt{(N_s + N_B)} = 11.17$
 - N_s still includes both HZ and W-fusion events
 - Better significance can be obtained because no cut on isolated leptons were used (this improved a lot the rejection of semileptonic events in my case)

process	Cross section (fb)	$\varepsilon_{pre}(\%)$	$\varepsilon_{final}(\%)$	
Signal	0.60	78.10	42.97	
$Higgs \rightarrow other decays$	203.06	7.33	1.34	
two-fermion backgrounds: $q\bar{q}$				
$e^-e^+ \rightarrow q\bar{q}$	54106.86	0.6	4.60×10^{-03}	
four-fermion backgrounds: ZZ				
ZZ_h	516.67	0.117	5.93×10^{-03}	
ZZ_sl	556.49	2.52	0.13	
four-fermion backgrounds: WW				
WW_h	3825.46	0.045	2.76×10^{-03}	
WW_sl	4846.99	0.403	0.11	
four-fermion backgrounds: ZZ or WW				
ZZ or WW_h	3217.87	0.049	2.51×10^{-03}	
four-fermion backgrounds: single Z				
SZE_sl	316.04	0.574	3.00×10^{-03}	
SZNU_sl	145.62	3.14	0.18	
four-fermion backgrounds: single W				
SW_sl	2612.62	1.25	0.02	

Circular colliders case

- To roughly simulate the results we can obtain with a circular collider, using the same ILD files
 - Set the target polarisation to P(e⁻,e⁺)=(0,0) and 5000 fb⁻¹ integrated luminosity
 - $N_s / \sqrt{(N_s + N_B)} = 13.11$
 - 3217 « signal » events selected, ~1000 Wfusion events selected
 - This would give (considering only W-fusion events):
 - $N_s / \sqrt{(N_s + N_B)} = 4.23$
 - \rightarrow 5.9 % precision on g_{HWW}

Channels	Events expected	Events selected	Selection $\%$
Signal	7410	3217	43.42 %
Other Higgs \rightarrow WW [*]	217436	8447	$3.885 \ \%$
Other Higgs	825219	14773	1.79~%
2 fermions leptonic	46971244	11	$2.433.10^{-5}$ %
2 fermions hadronic	247977696	1258	$5.075.10^{-5}$ %
4 fermions leptonic	38946308	4	$9.602.10^{-6}$ %
4 fermions hadronic	37037352	131	$3.535.10^{-5}$ %
4 fermions semileptonic	46752016	32402	$6.931.10^{-2}$ %

- g_{HWW} measurement through the e⁺e⁻ → v_ev_eH (H→WW*→ qqqq) channel seems hard at 240/250 GeV
 - Despite the g4_{HWW} dependancy, the cross section is simply too low
 - 5.9 % precision for 5000fb⁻¹ in circular colliders
- The BDT accuracy can be improved with a pure W-fusion sample, but i do not expect miracles